ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence

232   0   0.0 ( 0 )
 نشر من قبل Tomoya Tatsuno
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.



قيم البحث

اقرأ أيضاً

This paper describes a conceptual framework for understanding kinetic plasma turbulence as a generalized form of energy cascade in phase space. It is emphasized that conversion of turbulent energy into thermodynamic heat is only achievable in the pre sence of some (however small) degree of collisionality. The smallness of the collision rate is compensated by the emergence of small-scale structure in the velocity space. For gyrokinetic turbulence, a nonlinear perpendicular phase mixing mechanism is identified and described as a turbulent cascade of entropy fluctuations simultaneously occurring at spatial scales smaller than the ion gyroscale and in velocity space. Scaling relations for the resulting fluctuation spectra are derived. An estimate for the collisional cutoff is provided. The importance of adequately modeling and resolving collisions in gyrokinetic simulations is biefly discussed, as well as the relevance of these results to understanding the dissipation-range turbulence in the solar wind and the electrostatic microturbulence in fusion plasmas.
A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB f lows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the anti-phase-mixing effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the critical balance between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).
Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to lar ge velocity-space scales due to anti-phase-mixing modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.
The quasilinear theory of the Wigner-Poisson system in one spatial dimension is examined. Conservation laws and properties of the stationary solutions are determined. Quantum effects are shown to manifest themselves in transient periodic oscillations of the averaged Wigner function in velocity space. The quantum quasilinear theory is checked against numerical simulations of the bump-on-tail and the two-stream instabilities. The predicted wavelength of the oscillations in velocity space agrees well with the numerical results.
Entropy production during the process of thermal phase-separation of multiphase flows is investigated by means of a discrete Boltzmann kinetic model. The entropy production rate is found to increase during the spinodal decomposition stage and to decr ease during the domain growth stage, attaining its maximum at the crossover between the two. Such behaviour provides a natural criterion to identify and discriminate between the two regimes. Furthermore, the effects of heat conductivity, viscosity and surface tension on the entropy production rate are investigated by systematically probing the interplay between non-equilibrium energy and momentum fluxes. It is found that the entropy production rate due to energy fluxes is an increasing function of the Prandtl number, while the momentum fluxes exhibit an opposite trend. On the other hand, both contributions show an increasing trend with surface tension. The present analysis inscribes within the general framework of non-equilibrium thermodynamics and consequently it is expected to be relevant to a broad class of soft-flowing systems far from mechanical and thermal equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا