ﻻ يوجد ملخص باللغة العربية
We explore the multi-faceted important features of turbulence (e.g., anisotropy, dispersion, diffusion) in the three-dimensional (3D) wavenumber domain ($k_parallel$, $k_{perp,1}$, $k_{perp,2}$), by employing the k-filtering technique to the high-quality measurements of fields and particles from the MMS multi-spacecraft constellation. We compute the 3D power spectral densities (PSDs) of magnetic and electric fluctuations (marked as $rm{PSD}(delta mathbf{B}(mathbf{k}))$ and $rm{PSD}(delta mathbf{E}_{langlemathbf{v}_mathrm{i}rangle}(mathbf{k}))$), both of which show a prominent spectral anisotropy in the sub-ion range. We give the first 3D image of the bifurcation between power spectra of the electric and magnetic fluctuations, by calculating the ratio between $rm{PSD}(delta mathbf{E}_{ langlemathbf{v}_mathrm{i}rangle}(mathbf{k}))$ and $rm{PSD}(delta mathbf{B}(mathbf{k}))$, the distribution of which is related to the non-linear dispersion relation. We also compute the ratio between electric spectra in different reference frames defined by the ion bulk velocity, that is $mathrm{PSD}(delta{mathbf{E}_{mathrm{local} mathbf{v}_mathrm{i}}})/mathrm{PSD}(delta{mathbf{E}_{ langlemathbf{v}_mathrm{i}rangle}})$, to visualize the turbulence ion diffusion region (T-IDR) in wavenumber space. The T-IDR has an anisotropy and a preferential direction of wavevectors, which is generally consistent with the plasma wave theory prediction based on the dominance of kinetic Alfven waves (KAW). This work manifests the worth of the k-filtering technique in diagnosing turbulence comprehensively, especially when the electric field is involved.
We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate
Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In steady state, the trajectories of single protons and proton-pairs are studied, at different values of plasma beta (ratio between
Particle transport, acceleration and energisation are phenomena of major importance for both space and laboratory plasmas. Despite years of study, an accurate theoretical description of these effects is still lacking. Validating models with self-cons
To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the
We present the first study of the formation and dissipation of current sheets at electron scales in a wave-driven, weakly collisional, 3D kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionle