ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrum Sharing between Wireless Networks

179   0   0.0 ( 0 )
 نشر من قبل Leonard Grokop
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of two wireless networks operating on the same (presumably unlicensed) frequency band. Pairs within a given network cooperate to schedule transmissions, but between networks there is competition for spectrum. To make the problem tractable, we assume transmissions are scheduled according to a random access protocol where each network chooses an access probability for its users. A game between the two networks is defined. We characterize the Nash Equilibrium behavior of the system. Three regimes are identified; one in which both networks simultaneously schedule all transmissions; one in which the denser network schedules all transmissions and the sparser only schedules a fraction; and one in which both networks schedule only a fraction of their transmissions. The regime of operation depends on the pathloss exponent $alpha$, the latter regime being desirable, but attainable only for $alpha>4$. This suggests that in certain environments, rival wireless networks may end up naturally cooperating. To substantiate our analytical results, we simulate a system where networks iteratively optimize their access probabilities in a greedy manner. We also discuss a distributed scheduling protocol that employs carrier sensing, and demonstrate via simulations, that again a near cooperative equilibrium exists for sufficiently large $alpha$.



قيم البحث

اقرأ أيضاً

Spectrum sharing between wireless networks improves the efficiency of spectrum usage, and thereby alleviates spectrum scarcity due to growing demands for wireless broadband access. To improve the usual underutilization of the cellular uplink spectrum , this paper studies spectrum sharing between a cellular uplink and a mobile ad hoc networks. These networks access either all frequency sub-channels or their disjoint sub-sets, called spectrum underlay and spectrum overlay, respectively. Given these spectrum sharing methods, the capacity trade-off between the coexisting networks is analyzed based on the transmission capacity of a network with Poisson distributed transmitters. This metric is defined as the maximum density of transmitters subject to an outage constraint for a given signal-to-interference ratio (SIR). Using tools from stochastic geometry, the transmission-capacity trade-off between the coexisting networks is analyzed, where both spectrum overlay and underlay as well as successive interference cancelation (SIC) are considered. In particular, for small target outage probability, the transmission capacities of the coexisting networks are proved to satisfy a linear equation, whose coefficients depend on the spectrum sharing method and whether SIC is applied. This linear equation shows that spectrum overlay is more efficient than spectrum underlay. Furthermore, this result also provides insight into the effects of different network parameters on transmission capacities, including link diversity gains, transmission distances, and the base station density. In particular, SIC is shown to increase transmission capacities of both coexisting networks by a linear factor, which depends on the interference-power threshold for qualifying canceled interferers.
This paper studies a spectrum sharing scenario between a cooperative relay network (CRN) and a nearby ad-hoc network. In particular, we consider a dynamic spectrum access and resource allocation problem of the CRN. Based on sensing and predicting the ad-hoc transmission behaviors, the ergodic traffic collision time between the CRN and ad-hoc network is minimized subject to an ergodic uplink throughput requirement for the CRN. We focus on real-time implementation of spectrum sharing policy under practical computation and signaling limitations. In our spectrum sharing policy, most computation tasks are accomplished off-line. Hence, little real-time calculation is required which fits the requirement of practical applications. Moreover, the signaling procedure and computation process are designed carefully to reduce the time delay between spectrum sensing and data transmission, which is crucial for enhancing the accuracy of traffic prediction and improving the performance of interference mitigation. The benefits of spectrum sensing and cooperative relay techniques are demonstrated by our numerical experiments.
A new form of multiuser diversity, named emph{multiuser interference diversity}, is investigated for opportunistic communications in cognitive radio (CR) networks by exploiting the mutual interference between the CR and the existing primary radio (PR ) links. The multiuser diversity gain and ergodic throughput are analyzed for different types of CR networks and compared against those in the conventional networks without the PR link.
We investigate beamforming and artificial noise generation at the secondary transmitters to establish secure transmission in large scale spectrum sharing networks,where multiple non-colluding eavesdroppers attempt to intercept the secondary transmiss ion. We develop a comprehensive analytical framework to accurately assess the secrecy performance under the primary users quality of service constraint. Our aim is to characterize the impact of beamforming and artificial noise generation on this complex large scale network. We first derive exact expressions for the average secrecy rate and the secrecy outage probability.We then derive an easy-to-evaluate asymptotic average secrecy rate and asymptotic secrecy outage probability when the number of antennas at the secondary transmitter goes to infinity. Our results show that the equal power allocation between the useful signal and artificial noise is not always the best strategy to achieve maximum average secrecy rate in large scale spectrum sharing networks. Another interesting observation is that the advantage of beamforming and artificial noise generation over beamforming on the average secrecy rate is lost when the aggregate interference from the primary and secondary transmitters is strong, such that it overtakes the effect of the generated artificial noise.
This paper presents a spectrum sharing technology enabling interference-free operation of a surveillance radar and communication transmissions over a common spectrum. A cognitive radio receiver senses the spectrum using low sampling and processing ra tes. The radar is a cognitive system that employs a Xampling-based receiver and transmits in several narrow bands. Our main contribution is the alliance of two previous ideas, CRo and cognitive radar (CRr), and their adaptation to solve the spectrum sharing problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا