ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrum Sharing between Cooperative Relay and Ad-hoc Networks: Dynamic Transmissions under Computation and Signaling Limitations

252   0   0.0 ( 0 )
 نشر من قبل Yin Sun
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies a spectrum sharing scenario between a cooperative relay network (CRN) and a nearby ad-hoc network. In particular, we consider a dynamic spectrum access and resource allocation problem of the CRN. Based on sensing and predicting the ad-hoc transmission behaviors, the ergodic traffic collision time between the CRN and ad-hoc network is minimized subject to an ergodic uplink throughput requirement for the CRN. We focus on real-time implementation of spectrum sharing policy under practical computation and signaling limitations. In our spectrum sharing policy, most computation tasks are accomplished off-line. Hence, little real-time calculation is required which fits the requirement of practical applications. Moreover, the signaling procedure and computation process are designed carefully to reduce the time delay between spectrum sensing and data transmission, which is crucial for enhancing the accuracy of traffic prediction and improving the performance of interference mitigation. The benefits of spectrum sensing and cooperative relay techniques are demonstrated by our numerical experiments.



قيم البحث

اقرأ أيضاً

Spectrum sharing between wireless networks improves the efficiency of spectrum usage, and thereby alleviates spectrum scarcity due to growing demands for wireless broadband access. To improve the usual underutilization of the cellular uplink spectrum , this paper studies spectrum sharing between a cellular uplink and a mobile ad hoc networks. These networks access either all frequency sub-channels or their disjoint sub-sets, called spectrum underlay and spectrum overlay, respectively. Given these spectrum sharing methods, the capacity trade-off between the coexisting networks is analyzed based on the transmission capacity of a network with Poisson distributed transmitters. This metric is defined as the maximum density of transmitters subject to an outage constraint for a given signal-to-interference ratio (SIR). Using tools from stochastic geometry, the transmission-capacity trade-off between the coexisting networks is analyzed, where both spectrum overlay and underlay as well as successive interference cancelation (SIC) are considered. In particular, for small target outage probability, the transmission capacities of the coexisting networks are proved to satisfy a linear equation, whose coefficients depend on the spectrum sharing method and whether SIC is applied. This linear equation shows that spectrum overlay is more efficient than spectrum underlay. Furthermore, this result also provides insight into the effects of different network parameters on transmission capacities, including link diversity gains, transmission distances, and the base station density. In particular, SIC is shown to increase transmission capacities of both coexisting networks by a linear factor, which depends on the interference-power threshold for qualifying canceled interferers.
230 - Kaibin Huang , Yan Chen , Bin Chen 2008
In cellular systems using frequency division duplex, growing Internet services cause unbalance of uplink and downlink traffic, resulting in poor uplink spectrum utilization. Addressing this issue, this paper considers overlaying an ad hoc network ont o a cellular uplink network for improving spectrum utilization and spatial reuse efficiency. Transmission capacities of the overlaid networks are analyzed, which are defined as the maximum densities of the ad hoc nodes and mobile users under an outage constraint. Using tools from stochastic geometry, the capacity tradeoff curves for the overlaid networks are shown to be linear. Deploying overlaid networks based on frequency separation is proved to achieve higher network capacities than that based on spatial separation. Furthermore, spatial diversity is shown to enhance network capacities.
We consider the problem of two wireless networks operating on the same (presumably unlicensed) frequency band. Pairs within a given network cooperate to schedule transmissions, but between networks there is competition for spectrum. To make the probl em tractable, we assume transmissions are scheduled according to a random access protocol where each network chooses an access probability for its users. A game between the two networks is defined. We characterize the Nash Equilibrium behavior of the system. Three regimes are identified; one in which both networks simultaneously schedule all transmissions; one in which the denser network schedules all transmissions and the sparser only schedules a fraction; and one in which both networks schedule only a fraction of their transmissions. The regime of operation depends on the pathloss exponent $alpha$, the latter regime being desirable, but attainable only for $alpha>4$. This suggests that in certain environments, rival wireless networks may end up naturally cooperating. To substantiate our analytical results, we simulate a system where networks iteratively optimize their access probabilities in a greedy manner. We also discuss a distributed scheduling protocol that employs carrier sensing, and demonstrate via simulations, that again a near cooperative equilibrium exists for sufficiently large $alpha$.
To realize cooperative computation and communication in a relay mobile edge computing system, we develop a hybrid relay forward protocol, where we seek to balance the execution delay and network energy consumption. The problem is formulated as a nond ifferentible optimization problem which is nonconvex with highly coupled constraints. By exploiting the problem structure, we propose a lightweight algorithm based on inexact block coordinate descent method. Our results show that the proposed algorithm exhibits much faster convergence as compared with the popular concave-convex procedure based algorithm, while achieving good performance.
The subject of this paper is the long-standing open problem of developing a general capacity theory for wireless networks, particularly a theory capable of describing the fundamental performance limits of mobile ad hoc networks (MANETs). A MANET is a peer-to-peer network with no pre-existing infrastructure. MANETs are the most general wireless networks, with single-hop, relay, interference, mesh, and star networks comprising special cases. The lack of a MANET capacity theory has stunted the development and commercialization of many types of wireless networks, including emergency, military, sensor, and community mesh networks. Information theory, which has been vital for links and centralized networks, has not been successfully applied to decentralized wireless networks. Even if this was accomplished, for such a theory to truly characterize the limits of deployed MANETs it must overcome three key roadblocks. First, most current capacity results rely on the allowance of unbounded delay and reliability. Second, spatial and timescale decompositions have not yet been developed for optimally modeling the spatial and temporal dynamics of wireless networks. Third, a useful network capacity theory must integrate rather than ignore the important role of overhead messaging and feedback. This paper describes some of the shifts in thinking that may be needed to overcome these roadblocks and develop a more general theory that we refer to as non-equilibrium information theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا