ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial-Noise Aided Secure Transmission in Large Scale Spectrum Sharing Networks

49   0   0.0 ( 0 )
 نشر من قبل Yansha Deng
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate beamforming and artificial noise generation at the secondary transmitters to establish secure transmission in large scale spectrum sharing networks,where multiple non-colluding eavesdroppers attempt to intercept the secondary transmission. We develop a comprehensive analytical framework to accurately assess the secrecy performance under the primary users quality of service constraint. Our aim is to characterize the impact of beamforming and artificial noise generation on this complex large scale network. We first derive exact expressions for the average secrecy rate and the secrecy outage probability.We then derive an easy-to-evaluate asymptotic average secrecy rate and asymptotic secrecy outage probability when the number of antennas at the secondary transmitter goes to infinity. Our results show that the equal power allocation between the useful signal and artificial noise is not always the best strategy to achieve maximum average secrecy rate in large scale spectrum sharing networks. Another interesting observation is that the advantage of beamforming and artificial noise generation over beamforming on the average secrecy rate is lost when the aggregate interference from the primary and secondary transmitters is strong, such that it overtakes the effect of the generated artificial noise.

قيم البحث

اقرأ أيضاً

In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix , and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem is shown to be a single-variable optimization that can be solved by one-dimensional (1-D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. Furthermore, tightness of the relaxation for the 1-D search method is validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D search method but with much lower complexity.
We consider the problem of two wireless networks operating on the same (presumably unlicensed) frequency band. Pairs within a given network cooperate to schedule transmissions, but between networks there is competition for spectrum. To make the probl em tractable, we assume transmissions are scheduled according to a random access protocol where each network chooses an access probability for its users. A game between the two networks is defined. We characterize the Nash Equilibrium behavior of the system. Three regimes are identified; one in which both networks simultaneously schedule all transmissions; one in which the denser network schedules all transmissions and the sparser only schedules a fraction; and one in which both networks schedule only a fraction of their transmissions. The regime of operation depends on the pathloss exponent $alpha$, the latter regime being desirable, but attainable only for $alpha>4$. This suggests that in certain environments, rival wireless networks may end up naturally cooperating. To substantiate our analytical results, we simulate a system where networks iteratively optimize their access probabilities in a greedy manner. We also discuss a distributed scheduling protocol that employs carrier sensing, and demonstrate via simulations, that again a near cooperative equilibrium exists for sufficiently large $alpha$.
Spectrum sharing between wireless networks improves the efficiency of spectrum usage, and thereby alleviates spectrum scarcity due to growing demands for wireless broadband access. To improve the usual underutilization of the cellular uplink spectrum , this paper studies spectrum sharing between a cellular uplink and a mobile ad hoc networks. These networks access either all frequency sub-channels or their disjoint sub-sets, called spectrum underlay and spectrum overlay, respectively. Given these spectrum sharing methods, the capacity trade-off between the coexisting networks is analyzed based on the transmission capacity of a network with Poisson distributed transmitters. This metric is defined as the maximum density of transmitters subject to an outage constraint for a given signal-to-interference ratio (SIR). Using tools from stochastic geometry, the transmission-capacity trade-off between the coexisting networks is analyzed, where both spectrum overlay and underlay as well as successive interference cancelation (SIC) are considered. In particular, for small target outage probability, the transmission capacities of the coexisting networks are proved to satisfy a linear equation, whose coefficients depend on the spectrum sharing method and whether SIC is applied. This linear equation shows that spectrum overlay is more efficient than spectrum underlay. Furthermore, this result also provides insight into the effects of different network parameters on transmission capacities, including link diversity gains, transmission distances, and the base station density. In particular, SIC is shown to increase transmission capacities of both coexisting networks by a linear factor, which depends on the interference-power threshold for qualifying canceled interferers.
79 - Xiaobo Zhou , Jun Li , Feng Shu 2018
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin- level optimization problem and solved by a one-dimensional (1D) search and semidefinite relaxation (SDR) technique. Then in order to reduce the search complexity, we formulate an optimization problem based on maximizing the signal-to-leakage-AN-noise-ratio (Max-SLANR) criterion, and transform it into a SDR problem. Additionally, the relaxation is proved to be tight according to the classic Karush-Kuhn-Tucker (KKT) conditions. Finally, to reduce the computational complexity, a successive convex approximation (SCA) scheme is proposed to find a near-optimal solution. The complexity of the SCA scheme is much lower than that of the SRM and the Max-SLANR schemes. Simulation results demonstrate that the performance of the SCA scheme is very close to that of the SRM scheme in terms of its secrecy rate and bit error rate (BER), but much better than that of the zero forcing (ZF) scheme.
We investigate the physical-layer security of indoor hybrid parallel power-line/wireless orthogonal-frequency division-multiplexing (OFDM) communication systems. We propose an artificial-noise (AN) aided scheme to enhance the systems security in the presence of an eavesdropper by exploiting the decoupled nature of the power-line and wireless communication media. The proposed scheme does not require the instantaneous channel state information of the eavesdroppers links to be known at the legitimate nodes. In our proposed scheme, the legitimate transmitter (Alice) and the legitimate receiver (Bob) cooperate to secure the hybrid system where an AN signal is shared from Bob to Alice on the link with the lower channel-to-noise ratio (CNR) while the information stream in addition to a noisy-amplified version of the received AN signal is transmitted from Alice to Bob on the link with higher CNR at each OFDM sub-channel. In addition, we investigate the effect of the transmit power levels at both Alice and Bob and the power allocation ratio between the data and AN signals at Alice on the secure throughput. We investigate both single-link eavesdropping attacks, where only one link is exposed to eavesdropping attacks, and two-link eavesdropping attacks, where the two links are exposed to eavesdropping attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا