ﻻ يوجد ملخص باللغة العربية
We reduce a case of the hidden subgroup problem (HSP) in SL(2; q), PSL(2; q), and PGL(2; q), three related families of finite groups of Lie type, to efficiently solvable HSPs in the affine group AGL(1; q). These groups act on projective space in an almost 3-transitive way, and we use this fact in each group to distinguish conjugates of its Borel (upper triangular) subgroup, which is also the stabilizer subgroup of an element of projective space. Our observation is mainly group-theoretic, and as such breaks little new ground in quantum algorithms. Nonetheless, these appear to be the first positive results on the HSP in finite simple groups such as PSL(2; q).
In this paper, we prove a combination theorem for indicable subgroups of infinite-type (or big) mapping class groups. Importantly, all subgroups from the combination theorem, as well as those from the other results of the paper, can be constructed so
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a sur
Nebe, Rains and Sloane studied the polynomial invariants for real and complex Clifford groups and they relate the invariants to the space of complete weight enumerators of certain self-dual codes. The purpose of this paper is to show that very simila
We consider the action of the $2$-dimensional projective special linear group $PSL(2,q)$ on the projective line $PG(1,q)$ over the finite field $F_q$, where $q$ is an odd prime power. A subset $S$ of $PSL(2,q)$ is said to be an intersecting family if
Let $k$ be an algebraically closed field of characteristic $p>0$ and let $C/k$ be a smooth connected affine curve. Denote by $pi_1(C)$ its algebraic fundamental group. The goal of this paper is to characterize a certain subset of closed normal subgro