ﻻ يوجد ملخص باللغة العربية
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a surface group. We also give a simple representation-theoretic description of the structure of the abelianizations of these commutator subgroups and calculate their homology.
We give a new proof of a theorem of D. Calegari that says that the Cayley graph of a surface group with respect to any generating set lying in finitely many mapping class group orbits has infinite diameter. This applies, for instance, to the generating set consisting of all simple closed curves.
We give an algorithm to compute stable commutator length in free products of cyclic groups which is polynomial time in the length of the input, the number of factors, and the orders of the finite factors. We also describe some experimental and theoretical applications of this algorithm.
Let $$1 to H to G to Q to 1$$ be an exact sequence where $H= pi_1(S)$ is the fundamental group of a closed surface $S$ of genus greater than one, $G$ is hyperbolic and $Q$ is finitely generated free. The aim of this paper is to provide sufficient con
We study stable commutator length on mapping class groups of certain infinite-type surfaces. In particular, we show that stable commutator length defines a continuous function on the commutator subgroups of such infinite-type mapping class groups. We
We give a new upper bound on the stable commutator length of Dehn twists in hyperelliptic mapping class groups, and determine the stable commutator length of some elements. We also calculate values and the defects of homogeneous quasimorphisms derive