ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of intersecting families of maximum size in $PSL(2,q)$

79   0   0.0 ( 0 )
 نشر من قبل Qing Xiang
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the action of the $2$-dimensional projective special linear group $PSL(2,q)$ on the projective line $PG(1,q)$ over the finite field $F_q$, where $q$ is an odd prime power. A subset $S$ of $PSL(2,q)$ is said to be an intersecting family if for any $g_1,g_2 in S$, there exists an element $xin PG(1,q)$ such that $x^{g_1}= x^{g_2}$. It is known that the maximum size of an intersecting family in $PSL(2,q)$ is $q(q-1)/2$. We prove that all intersecting families of maximum size are cosets of point stabilizers for all odd prime powers $q>3$.



قيم البحث

اقرأ أيضاً

98 - Nathan Lindzey 2018
A family of perfect matchings of $K_{2n}$ is $t$-$intersecting$ if any two members share $t$ or more edges. We prove for any $t in mathbb{N}$ that every $t$-intersecting family of perfect matchings has size no greater than $(2(n-t) - 1)!!$ for suffic iently large $n$, and that equality holds if and only if the family is composed of all perfect matchings that contain a fixed set of $t$ disjoint edges. This is an asymptotic version of a conjecture of Godsil and Meagher that can be seen as the non-bipartite analogue of the Deza-Frankl conjecture proven by Ellis, Friedgut, and Pilpel.
A family of sets is said to be emph{symmetric} if its automorphism group is transitive, and emph{intersecting} if any two sets in the family have nonempty intersection. Our purpose here is to study the following question: for $n, kin mathbb{N}$ with $k le n/2$, how large can a symmetric intersecting family of $k$-element subsets of ${1,2,ldots,n}$ be? As a first step towards a complete answer, we prove that such a family has size at most [expleft(-frac{c(n-2k)log n}{k( log n - log k)} right) binom{n}{k},] where $c > 0$ is a universal constant. We also describe various combinatorial and algebraic approaches to constructing such families.
74 - Nathan Lindzey 2018
A family of perfect matchings of $K_{2n}$ is $intersecting$ if any two of its members have an edge in common. It is known that if $mathcal{F}$ is family of intersecting perfect matchings of $K_{2n}$, then $|mathcal{F}| leq (2n-3)!!$ and if equality h olds, then $mathcal{F} = mathcal{F}_{ij}$ where $ mathcal{F}_{ij}$ is the family of all perfect matchings of $K_{2n}$ that contain some fixed edge $ij$. In this note, we show that the extremal families are stable, namely, that for any $epsilon in (0,1/sqrt{e})$ and $n > n(epsilon)$, any intersecting family of perfect matchings of size greater than $(1 - 1/sqrt{e} + epsilon)(2n-3)!!$ is contained in $mathcal{F}_{ij}$ for some edge $ij$. The proof uses the Gelfand pair $(S_{2n},S_2 wr S_n)$ along with an isoperimetric method of Ellis.
A family of subsets of $[n]$ is intersecting if every pair of its sets intersects. Determining the structure of large intersecting families is a central problem in extremal combinatorics. Frankl-Kupavskii and Balogh-Das-Liu-Sharifzadeh-Tran independe ntly showed that for $ngeq 2k + csqrt{kln k}$, almost all $k$-uniform intersecting families are stars. Improving their result, we show that the same conclusion holds for $ngeq 2k+ 100ln k$. Our proof uses, among others, Sapozhenkos graph container lemma and the Das-Tran removal lemma.
129 - Paul A. Russell 2007
We shall be interested in the following Erdos-Ko-Rado-type question. Fix some subset B of [n]. How large a family A of subsets of [n] can we find such that the intersection of any two sets in A contains a cyclic translate (modulo n) of B? Chung, Grah am, Frankl and Shearer have proved that, in the case where B is a block of length t, we can do no better than to take A to consist of all supersets of B. We give an alternative proof of this result, which is in a certain sense more direct.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا