ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling of chemical processes in the low pressure capacitive RF discharges in a mixture of Ar/C2H2

67   0   0.0 ( 0 )
 نشر من قبل Irina Schweigert
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the properties of a capacitive 13.56 MHz discharge properties with a mixture of Ar/C2H2 taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ions transport and plasmochemical processes. A significant change of plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.


قيم البحث

اقرأ أيضاً

The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kin etic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo methods as well as the conceptual details in the context of the sputtering scenario are elaborated on. Finally, two in the context of sputtering transport simulations often exploited assumptions, namely on the energy distribution of impinging ions as well as on the test particle approach, are validated for the proposed example discharge.
This paper reports experiments on self$-$excited dust acoustic waves (DAWs) and its propagation characteristics in a magnetized rf discharge plasma. The DAWs are spontaneously excited in dusty plasma after adding more particles in the confining poten tial well and found to propagate in the direction of streaming ions. The spontaneous excitation of such low-frequency modes is possible due to the instabilities associated with streaming ions through the dust grain medium. The background E-field and neutral pressure determine the stability of excited DAWs. The characteristics of DAWs strongly depend on the strength of external magnetic field. The magnetic field of strength B $<$ 0.05 T only modifies the characteristics of propagating waves in dusty plasma at moderate power and pressure, P = 3.5 W and p = 27 Pa respectively. It is found that DAWs start to be damped with increasing the magnetic field beyond B $>$ 0.05 T and get completely damped at higher magnetic field B $sim$ 0.13 T. After lowering the power and pressure to 3 W and 23 Pa respectively, the excited DAWs in the absence of B are slightly unstable. In this case, the magnetic field only stabilizes and modifies the propagation characteristics of DAWs while the strength of B is increased up to 0.1 T or even higher. The modification of the sheath electric field where particles are confined in the presence of the external magnetic field is the main cause of the modification and damping of the DAWs in a magnetized rf discharge plasma.
112 - J. Schulze , Z. Donko , A. Derzsi 2016
We investigate the electron heating dynamics in electropositive argon and helium capacitively coupled RF discharges driven at 13.56 MHz by Particle in Cell simulations and by an analytical model. The model allows to calculate the electric field outsi de the electrode sheaths, space and time resolved within the RF period. Electrons are found to be heated by strong ambipolar electric fields outside the sheath during the phase of sheath expansion in addition to classical sheath expansion heating. By tracing individual electrons we also show that ionization is primarily caused by electrons that collide with the expanding sheath edge multiple times during one phase of sheath expansion due to backscattering towards the sheath by collisions. A synergistic combination of these different heating events during one phase of sheath expansion is required to accelerate an electron to energies above the threshold for ionization. The ambipolar electric field outside the sheath is found to be time modulated due to a time modulation of the electron mean energy caused by the presence of sheath expansion heating only during one half of the RF period at a given electrode. This time modulation results in more electron heating than cooling inside the region of high electric field outside the sheath on time average. If an electric field reversal is present during sheath collapse, this time modulation and, thus, the asymmetry between the phases of sheath expansion and collapse will be enhanced. We propose that the ambipolar electron heating should be included in models describing electron heating in capacitive RF plasmas.
In this work, we present the results of simulations carried out for N2-H2 capacitively coupled radio-frequency discharges, running at low pressure (0.3-0.9 mbar), low power (5-20 W), and for amounts of H2 up to 5 pct. Simulations are performed using a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles in the discharge, to a zero-dimensional kinetic module, that solves the Boltzmann equation and describes the production and destruction of neutral species. The model accounts for the production of several vibrationally and electronic excited states, and contains a detailed surface chemistry that includes recombination processes and the production of NHx molecules. The results obtained highlight the relevance of the interactions between plasma and surface, given the role of the secondary electron emission in the electrical parameters of the discharge and the critical importance of the surface production of ammonia to the neutral and ionic chemistry of the discharge.
94 - Hao Zheng , Jidun Wu , Qilu Cao 2020
An 18-level argon collisional radiative model (CRM) suitable for low pressure was established. The model can be solved by combining the optical emission spectroscopy (OES) with Langmuir probe calibration. In the capacitively coupled plasmas (CCPs) wi th different frequency and power, the electron temperature and density obtained by the model were compared with those measured by Langmuir probe. It is found that the calibration point at any frequency or power is suitable for the fixed pressure. This method was then applied to the diagnosis of triple-frequency (TF) CCPs, it is shown that the high frequency (HF) power mainly controls the electron density, the low frequency (LF) power mainly controls the electron temperature, and the intermediate frequency (IF) power was between the two. Compared with the dual-frequency (DF) CCPs, it is found that with the increase of IF power, the HF power can control the electron density more independently with less influence on the electron temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا