ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of External Magnetic Field on Dust$-$Acoustic Waves in a Capacitive RF Discharge

76   0   0.0 ( 0 )
 نشر من قبل Mangilal Choudhary
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports experiments on self$-$excited dust acoustic waves (DAWs) and its propagation characteristics in a magnetized rf discharge plasma. The DAWs are spontaneously excited in dusty plasma after adding more particles in the confining potential well and found to propagate in the direction of streaming ions. The spontaneous excitation of such low-frequency modes is possible due to the instabilities associated with streaming ions through the dust grain medium. The background E-field and neutral pressure determine the stability of excited DAWs. The characteristics of DAWs strongly depend on the strength of external magnetic field. The magnetic field of strength B $<$ 0.05 T only modifies the characteristics of propagating waves in dusty plasma at moderate power and pressure, P = 3.5 W and p = 27 Pa respectively. It is found that DAWs start to be damped with increasing the magnetic field beyond B $>$ 0.05 T and get completely damped at higher magnetic field B $sim$ 0.13 T. After lowering the power and pressure to 3 W and 23 Pa respectively, the excited DAWs in the absence of B are slightly unstable. In this case, the magnetic field only stabilizes and modifies the propagation characteristics of DAWs while the strength of B is increased up to 0.1 T or even higher. The modification of the sheath electric field where particles are confined in the presence of the external magnetic field is the main cause of the modification and damping of the DAWs in a magnetized rf discharge plasma.

قيم البحث

اقرأ أيضاً

An interesting aspect of complex plasma is its ability to self-organize into a variety of structural configurations and undergo transitions between these states. A striking phenomenon is the isotropic-to-string transition observed in electrorheologic al complex plasma under the influence of a symmetric ion wakefield. Such transitions have been investigated using the Plasma Kristall-4 (PK-4) microgravity laboratory on the International Space Station (ISS). Recent experiments and numerical simulations have shown that, under PK-4 relevant discharge conditions, the seemingly homogeneous DC discharge column is highly inhomogeneous, with large axial electric field oscillations associated with ionization waves occurring on microsecond time scales. A multi-scale numerical model of the dust-plasma interactions is employed to investigate the role of the electric field on the charge of individual dust grains, the ion wakefield, and the order of string-like structures. Results are compared to dust strings formed in similar conditions in the PK-4 experiment.
We employ a particle-in-cell Monte Carlo collision/particle-particle particle-mesh (PIC-MCC/PPPM) simulation to study the plasma flow around and the charge distribution of a three-dimensional dust cluster in the sheath of a low-pressure rf argon disc harge. The geometry of the cluster and its position in the sheath are fixed to the experimental values, prohibiting a mechanical response of the cluster. Electrically, however, the cluster and the plasma environment, mimicking also the experimental situation, are coupled self-consistently. We find a broad distribution of the charges collected by the grains. The ion flux shows on the scale of the Debye length strong focusing and shadowing inside and outside the cluster due to the attraction of the ions to the negatively charged grains whereas the electron flux is characterized on this scale only by a weak spatial modulation of its magnitude depending on the rf phase. On the scale of the individual dust potentials, however, the electron flux deviates in the vicinity of the cluster strongly from the laminar flow associated with the plasma sheath. It develops convection patterns to compensate for the depletion of electrons inside the dust cluster.
The ionization efficiency of helicon plasma discharge is explored by changing the low axial magnetic field gradients near the helicon antenna. The highest plasma density is found for a most possible diverging field near the antenna by keeping the oth er operating condition constant. Measurement of axial wave number together with estimated radial wavenumber suggests the oblique mode propagation of helicon wave along the resonance cone boundary. Propagation of helicon wave near the resonance cone angle boundary can excite electrostatic fluctuations which subsequently can deposit energy in the plasma. This process has been shown to be responsible for peaking in density in low field helicon discharges, where the helicon wave propagates at an angle with respect to the applied uniform magnetic field. The increased efficiency can be explained on the basis of multiple resonances for multimode excitation by the helicon antenna due to the availability of a broad range of magnetic field values in the near field of the antenna when a diverging magnetic field is applied in the source.
We report on the observation of the self-excited dust density waves in the dc discharge complex plasma. The experiments were performed under microgravity conditions in the Plasmakristall-4 facility on board the International Space Station. In the exp eriment, the microparticle cloud was first trapped in an inductively coupled plasma, then released to drift for some seconds in a dc discharge with constant current. After that the discharge polarity was reversed. DC plasma containing a drifting microparticle cloud was found to be strongly non-uniform in terms of microparticle drift velocity and plasma emission in accord with [Zobnin et.al., Phys. Plasmas 25, 033702 (2018)]. In addition to that, non-uniformity in the self-excited wave pattern was observed: In the front edge of the microparticle cloud (defined as head), the waves had larger phase velocity than in the rear edge (defined as tail). Also, after the polarity reversal, the wave pattern exhibited several bifurcations: Between each of the two old wave crests, a new wave crest has formed. These bifurcations, however, occurred only in the head of the microparticle cloud. We show that spatial variations of electric field inside the drifting cloud play an important role in the formation of the wave pattern. Comparison of the theoretical estimations and measurements demonstrate the significant impact of the electric field on the phase velocity of the wave. The same theoretical approach applied to the instability growth rate, showed agreement between estimated and measured values.
The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discha rge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا