ترغب بنشر مسار تعليمي؟ اضغط هنا

The EUV Sun as the superposition of elementary Suns

44   0   0.0 ( 0 )
 نشر من قبل Thierry Dudok de Wit
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many studies assume that the solar irradiance in the EUV can be decomposed into different contributions, which makes the modelling of the spectral variability considerably easier. We consider a different approach, in which these contributions are not imposed a priori but are effectively and robustly inferred from spectral irradiance measurements. This is a source separation problem with a positivity constraint, for which we use a Bayesian solution. Using five years of daily EUV spectra recorded by the TIMED/SEE satellite, we show that the spectral irradiance can be decomposed into three elementary spectra. Our results suggest that they describe different layers of the solar atmosphere rather than specific regions. The temporal variability of these spectra is discussed.

قيم البحث

اقرأ أيضاً

72 - G. Del Zanna 2019
We benchmark new atomic data against a selection of irradiances obtained from medium-resolution quiet Sun spectra in the EUV, from 60 to 1040 AA. We use as a baseline the irradiances measured during solar minimum on 2008 April 14 by the prototype (PE VE) of the Solar Dynamics Observatory Extreme ultraviolet Variability Experiment (EVE). We take into account some inconsistencies in the PEVE data, using flight EVE data and irradiances we obtained from Solar & Heliospheric Observatory (SoHO) Coronal Diagnostics Spectrometer (CDS) data. We perform a differential emission measure and find overall excellent agreement (to within the accuracy of the observations, about 20%) between predicted and measured irradiances in most cases, although we point out several problems with the currently available ion charge state distributions. We used the photospheric chemical abundances of Asplund et al. (2009). The new atomic data are nearly complete in this spectral range, for medium-resolution irradiance spectra. Finally, we use observations of the active Sun in 1969 to show that also in that case the composition of the solar corona up to 1 MK is nearly photospheric. Variations of a factor of 2 are present for higher-temperature plasma, which is emitted within active regions.These results are in excellent agreement with our previous findings.
We used data from the Helioseismic and Magnetic Imager (HMI), and Atmospheric Imaging Assembly (AIA) on the textit{Solar Dynamics Observatory} (SDO) to study coronal loops at small scales, emerging in the quiet Sun. With HMI line-of-sight magnetogram s, we derive the integrated and unsigned photospheric magnetic flux at the loop footpoints in the photosphere. These loops are bright in the EUV channels of AIA. Using the six AIA EUV filters, we construct the differential emission measure (DEM) in the temperature range $5.7 - 6.5$ in log $T$ (K) for several hours of observations. The observed DEMs have a peak distribution around log $T approx$ 6.3, falling rapidly at higher temperatures. For log $T <$ 6.3, DEMs are comparable to their peak values within an order of magnitude. The emission weighted temperature is calculated, and its time variations are compared with those of magnetic flux. We present two possibilities for explaining the observed DEMs and temperatures variations. (a) Assuming the observed loops are comprised of hundred thin strands with certain radius and length, we tested three time-dependent heating models and compared the resulting DEMs and temperatures with the observed quantities. This modeling used Enthalpy-based Thermal Evolution of Loops (EBTEL), a zero-dimensional (0D) hydrodynamic code. The comparisons suggest that a medium frequency heating model with a population of different heating amplitudes can roughly reproduce the observations. (b) We also consider a loop model with steady heating and non-uniform cross-section of the loop along its length, and find that this model can also reproduce the observed DEMs, provided the loop expansion factor $gamma sim$ 5 - 10. More observational constraints are required to better understand the nature of coronal heating in the short emerging loops on the quiet Sun.
The present study reports the discovery of Sun-like stars, namely main-sequence stars with $T_{rm eff}$, $log g$ and rotation periods $P_{rot}$ similar to solar values, presenting evidence of surface differential rotation. An autocorrelation of the t ime series was used to select stars presenting photometric signal stability from a sample of 881 stars with light curves collected by the $Kepler$ space-borne telescope, in which we have identified 17 stars with stable signals. A simple two-spot model together with a Bayesian information criterion were applied to these stars in the search for indications of differential rotation; in addition, for all 17 stars, it was possible to compute the spot rotation period $P$, the mean values of the individual spot rotation periods and their respective colatitudes, and the relative amplitude of the differential rotation.
In a variant of communication complexity tasks, two or more separated parties cooperate to compute a function of their local data, using a limited amount of communication. It is known that communication of quantum systems and shared entanglement can increase the probability for the parties to arrive at the correct value of the function, compared to classical resources. Here we show that quantum superpositions of the direction of communication between parties can also serve as a resource to improve the probability of success. We present a tripartite task for which such a superposition provides an advantage compared to the case where the parties communicate in a fixed order. In a more general context, our result also provides the first semi-device-independent certification of the absence of a definite order of communication.
We illustrate properties of guided waves in terms of a superposition of body waves. In particular, we consider the Love and SH waves. Body-wave propagation at postcritical angles--required for a total reflection--results in the speed of the Love wave being between the speeds of the SH waves in the layer and in the halfspace. A finite wavelength of the SH waves--required for constructive interference--results in a limited number of modes of the Love wave. Each mode exhibits a discrete frequency and propagation speed; the fundamental mode has the lowest frequency and the highest speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا