ﻻ يوجد ملخص باللغة العربية
We benchmark new atomic data against a selection of irradiances obtained from medium-resolution quiet Sun spectra in the EUV, from 60 to 1040 AA. We use as a baseline the irradiances measured during solar minimum on 2008 April 14 by the prototype (PEVE) of the Solar Dynamics Observatory Extreme ultraviolet Variability Experiment (EVE). We take into account some inconsistencies in the PEVE data, using flight EVE data and irradiances we obtained from Solar & Heliospheric Observatory (SoHO) Coronal Diagnostics Spectrometer (CDS) data. We perform a differential emission measure and find overall excellent agreement (to within the accuracy of the observations, about 20%) between predicted and measured irradiances in most cases, although we point out several problems with the currently available ion charge state distributions. We used the photospheric chemical abundances of Asplund et al. (2009). The new atomic data are nearly complete in this spectral range, for medium-resolution irradiance spectra. Finally, we use observations of the active Sun in 1969 to show that also in that case the composition of the solar corona up to 1 MK is nearly photospheric. Variations of a factor of 2 are present for higher-temperature plasma, which is emitted within active regions.These results are in excellent agreement with our previous findings.
We perform a quantitative analysis of the solar composition problem by using a statistical approach that allows us to combine the information provided by helioseimic and solar neutrino data in an effective way. We include in our analysis the heliosei
Aims. The main aim of the present analysis is to decipher (i) the small-scale bright features in solar images of the quiet Sun and active regions obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and (ii) the ALMA correspondence o
This work reviews our understanding of the magnetic fields observed in the quiet Sun. The subject has undergone a major change during the last decade (quiet revolution), and it will remain changing since the techniques of diagnostic employed so far a
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into
IMaX/Sunrise has recently reported the temporal evolution of highly dynamic and strongly Doppler shifted Stokes V signals in the quiet Sun. We attempt to identify the same quiet-Sun jets in the Hinode spectropolarimeter (SP) data set. We generate com