ﻻ يوجد ملخص باللغة العربية
The present study reports the discovery of Sun-like stars, namely main-sequence stars with $T_{rm eff}$, $log g$ and rotation periods $P_{rot}$ similar to solar values, presenting evidence of surface differential rotation. An autocorrelation of the time series was used to select stars presenting photometric signal stability from a sample of 881 stars with light curves collected by the $Kepler$ space-borne telescope, in which we have identified 17 stars with stable signals. A simple two-spot model together with a Bayesian information criterion were applied to these stars in the search for indications of differential rotation; in addition, for all 17 stars, it was possible to compute the spot rotation period $P$, the mean values of the individual spot rotation periods and their respective colatitudes, and the relative amplitude of the differential rotation.
In the present study, high-precision time series photometry for the active emph{Kepler} stars is described in the language of multifractals. We explore the potential of using the rescaled range analysis ($R/S$) and multifractal detrended moving avera
The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT missions Public Archives. In our analysis, we performe
The differentially rotating outer layers of stars are thought to play a role in driving their magnetic activity, but the underlying mechanisms that generate and sustain differential rotation are poorly understood. We report the measurement of latitud
We study the distribution of the photometric rotation period (Prot), which is a direct measurement of the surface rotation at active latitudes, for three subsamples of Sun-like stars: one from CoRoT data and two from Kepler data. We identify the main
In the present study, we investigate the multifractal nature of a long-cadence time series observed by the textit{Kepler} mission for a sample of 34 M dwarf stars and the Sun in its active phase. Using the Multifractal Detrending Moving Average algor