ترغب بنشر مسار تعليمي؟ اضغط هنا

High-frequency corrections to the detector response and their effect on searches for gravitational waves

153   0   0.0 ( 0 )
 نشر من قبل Joseph Romano
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Searches for gravitational waves with km-scale laser interferometers often involve the long-wavelength approximation to describe the detector response. The prevailing assumption is that the corrections to the detector response due to its finite size are small and the errors due to the long-wavelength approximation are negligible. Recently, however, Baskaran and Grishchuk (2004 Class. Quantum Grav. 21 4041) found that in a simple Michelson interferometer such errors can be as large as 10 percent. For more accurate analysis, these authors proposed to use a linear-frequency correction to the long wavelength approximation. In this paper we revisit these calculations. We show that the linear-frequency correction is inadequate for certain locations in the sky and therefore accurate analysis requires taking into account the exact formula, commonly derived from the photon round-trip propagation time. Also, we extend the calculations to include the effect of Fabry-Perot resonators in the interferometer arms. Here we show that a simple approximation which combines the long-wavelength Michelson response with the single-pole approximation to the Fabry-Perot transfer function produces rather accurate results. In particular, the difference between the exact and the approximate formulae is at most 2-3 percent for those locations in the sky where the detector response is greater than half of its maximum value. We analyse the impact of such errors on detection sensitivity and parameter estimation in searches for periodic gravitational waves emitted by a known pulsar, and in searches for an isotropic stochastic gravitational-wave background. At frequencies up to 1 kHz, the effect of such errors is at most 1-2 percent. For higher frequencies, or if more accuracy is required, one should use the exact formula for the response.

قيم البحث

اقرأ أيضاً

102 - Keith Riles 2012
The LIGO Scientific Collaboration and Virgo Collaboration have carried out joint searches in LIGO and Virgo data for periodic continuous gravitational waves. These analyses range from targeted searches for gravitational-wave signals from known pulsar s, for which precise ephemerides from radio or X-ray observations are used in matched filters, to all-sky searches for unknown neutron stars, including stars in binary systems. Between these extremes lie directed searches for known stars of unknown spin frequency or for new unknown sources at specific locations, such as near the galactic center or in globular clusters. Recent and ongoing searches of each type will be summarized, along with prospects for future searches using data from the Advanced LIGO and Virgo detectors.
79 - Keith Riles 2017
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst and a kilonova , reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein clouds surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches discussed.
The {it exact} formulation for the effect of the Brans-Dicke scalar field on the gravitational corrections to the Sagnac delay in the Jordan and Einstein frames is presented for the first time. The results completely agree with the known PPN factors in the weak field region. The calculations also reveal how the Brans-Dicke coupling parameter (appears in various correction terms for different types of source/observer orbits. A first order correction of roughly 2.83 x 10^{-1} fringe shift for visible light is introduced by the gravity-scalar field combination for Earth bound equatorial orbits. It is also demonstrated that the final predictions in the two frames do not differ. The effect of the scalar field on the geodetic and Lense-Thirring precession of a spherical gyroscope in circular polar orbit around the Earth is also computed with an eye towards the Stanford Gravity Probe-B experiment currently in progress. The feasibility of optical and matter-wave interferometric measurements is discussed briefly.
Wide parameter space searches for long lived continuous gravitational wave signals are computationally limited. It is therefore critically important that available computational resources are used rationally. In this paper we consider directed search es, i.e. targets for which the sky position is known accurately but the frequency and spindown parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spindown should we search? Finally, what is the optimal search set-up that we should use? In this paper we present a general framework that allows to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo de tectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO--Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses $M le 35 M_odot$, to detect binaries with non-zero eccentricity. We model the gravitational waves from eccentric binaries using the $x$-model post-Newtonian formalism proposed by Hinder emph{et. al.} [I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities ($e_0 lesssim 0.05$ at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass $2 M_odot < M < 15 M_odot$. For eccentricities $e_0 gtrsim 0.1$, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا