ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal directed searches for continuous gravitational waves

198   0   0.0 ( 0 )
 نشر من قبل Jing Ming
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wide parameter space searches for long lived continuous gravitational wave signals are computationally limited. It is therefore critically important that available computational resources are used rationally. In this paper we consider directed searches, i.e. targets for which the sky position is known accurately but the frequency and spindown parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spindown should we search? Finally, what is the optimal search set-up that we should use? In this paper we present a general framework that allows to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.

قيم البحث

اقرأ أيضاً

79 - Keith Riles 2017
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst and a kilonova , reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein clouds surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches discussed.
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic Center region, performed on two years of data from LIGOs fifth science run from two LIGO detectors. The search uses a semi-coherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first order spindown values down to -7.86 x 10^-8 Hz/s at the highest frequency. No gravitational waves were detected. We place 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center. Placing 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center, we reach ~3.35x10^-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.
In this paper we design a search for continuous gravitational waves from three supernova remnants: Vela Jr., Cassiopeia A (Cas A) and G347.3. These systems might harbor rapidly rotating neutron stars emitting quasi-periodic gravitational radiation de tectable by the advanced LIGO detectors. Our search is designed to use the volunteer computing project Einstein@Home for a few months and assumes the sensitivity and duty cycles of the advanced LIGO detectors during their first science run. For all three supernova remnants, the sky-positions of their central compact objects are well known but the frequency and spin-down rates of the neutron stars are unknown which makes the searches computationally limited. In a previous paper we have proposed a general framework for deciding on what target we should spend computational resources and in what proportion, what frequency and spin-down ranges we should search for every target, and with what search set-up. Here we further expand this framework and apply it to design a search directed at detecting continuous gravitational wave signals from the most promising three supernova remnants identified as such in the previous work. Our optimization procedure yields broad frequency and spin-down searches for all three objects, at an unprecedented level of sensitivity: The smallest detectable gravitational wave strain $h_0$ for Cas A is expected to be 2 times smaller than the most sensitive upper-limits published to date, and our proposed search, which was set-up and ran on the volunteer computing project Einstein@Home, covers a much larger frequency range.
98 - Keith Riles 2012
The LIGO Scientific Collaboration and Virgo Collaboration have carried out joint searches in LIGO and Virgo data for periodic continuous gravitational waves. These analyses range from targeted searches for gravitational-wave signals from known pulsar s, for which precise ephemerides from radio or X-ray observations are used in matched filters, to all-sky searches for unknown neutron stars, including stars in binary systems. Between these extremes lie directed searches for known stars of unknown spin frequency or for new unknown sources at specific locations, such as near the galactic center or in globular clusters. Recent and ongoing searches of each type will be summarized, along with prospects for future searches using data from the Advanced LIGO and Virgo detectors.
This document describes a code to perform parameter estimation and model selection in targeted searches for continuous gravitational waves from known pulsars using data from ground-based gravitational wave detectors. We describe the general workings of the code and characterise it on simulated data containing both noise and simulated signals. We also show how it performs compared to a previous MCMC and grid-based approach to signal parameter estimation. Details how to run the code in a variety of cases are provided in Appendix A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا