ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent searches for continuous gravitational waves

80   0   0.0 ( 0 )
 نشر من قبل Keith Riles
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Keith Riles




اسأل ChatGPT حول البحث

Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein clouds surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches discussed.



قيم البحث

اقرأ أيضاً

Wide parameter space searches for long lived continuous gravitational wave signals are computationally limited. It is therefore critically important that available computational resources are used rationally. In this paper we consider directed search es, i.e. targets for which the sky position is known accurately but the frequency and spindown parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spindown should we search? Finally, what is the optimal search set-up that we should use? In this paper we present a general framework that allows to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.
159 - Keith Riles 2012
The LIGO Scientific Collaboration and Virgo Collaboration have carried out joint searches in LIGO and Virgo data for periodic continuous gravitational waves. These analyses range from targeted searches for gravitational-wave signals from known pulsar s, for which precise ephemerides from radio or X-ray observations are used in matched filters, to all-sky searches for unknown neutron stars, including stars in binary systems. Between these extremes lie directed searches for known stars of unknown spin frequency or for new unknown sources at specific locations, such as near the galactic center or in globular clusters. Recent and ongoing searches of each type will be summarized, along with prospects for future searches using data from the Advanced LIGO and Virgo detectors.
This document describes a code to perform parameter estimation and model selection in targeted searches for continuous gravitational waves from known pulsars using data from ground-based gravitational wave detectors. We describe the general workings of the code and characterise it on simulated data containing both noise and simulated signals. We also show how it performs compared to a previous MCMC and grid-based approach to signal parameter estimation. Details how to run the code in a variety of cases are provided in Appendix A.
Scorpius X-1 (Sco X-1) and X-ray transient (XTE) J1751-305 are Low-Mass X-ray Binaries (LMXBs) that may emit continuous gravitational waves detectable in the band of ground-based interferometric observatories. Neutron stars in LMXBs could reach a tor que-balance steady-state equilibrium in which angular momentum addition from infalling matter from the binary companion is balanced by angular momentum loss, conceivably due to gravitational-wave emission. Torque-balance predicts a scale for detectable gravitational-wave strain based on observed X-ray flux. This paper describes a search for Sco X-1 and XTE J1751-305 in LIGO Science Run 6 data using the TwoSpect algorithm, based on searching for orbital modulations in the frequency domain. While no detections are claimed, upper limits on continuous gravitational-wave emission from Sco X-1 are obtained, spanning gravitational-wave frequencies from 40 to 2040 Hz and projected semi-major axes from 0.90 to 1.98 light-seconds. These upper limits are injection validated, equal any previous set in initial LIGO data, and extend over a broader parameter range. At optimal strain sensitivity, achieved at 165 Hz, the 95% confidence level random-polarization upper limit on dimensionless strain $h_0$ is approximately $1.8 times 10^{-24}$. Closest approach to the torque-balance limit, within a factor of 27, is also at 165 Hz. These are the first upper limits known to date on $r$-mode emission from this XTE source. Upper limits are set in particular narrow frequency bands of interest for J1751-305. The TwoSpect method will be used in upcoming searches of Advanced LIGO and Virgo data.
The direct detection of gravitational waves with the next generation detectors, like Advanced LIGO, provides the opportunity to measure deviations from the predictions of General Relativity. One such departure would be the existence of alternative po larizations. To measure these, we study a single detector measurement of a continuous gravitational wave from a triaxial pulsar source. We develop methods to detect signals of any polarization content and distinguish between them in a model independent way. We present LIGO S5 sensitivity estimates for 115 pulsars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا