ترغب بنشر مسار تعليمي؟ اضغط هنا

Early-type galaxies in the near-infrared: 1.5-2.4mum spectroscopy

236   0   0.0 ( 0 )
 نشر من قبل Mary Cesetti Mrs
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near-infrared (hereafter NIR) data may provide complementary information to the traditional optical population synthesis analysis of unresolved stellar populations because the spectral energy distribution of the galaxies in the 1-2.5mum range is dominated by different types of stars than at optical wavelengths. Furthermore, NIR data are subjected to less absorption and hence could constrain the stellar populations in dust-obscured galaxies. We want to develop observational constraints on the stellar populations of unresolved stellar systems in the NIR. To achieve this goal we need a benchmark sample of NIR spectra of ``simple early-type galaxies, to be used for testing and calibrating the outputs of population synthesis models. We obtained low-resolution (R~1000) long-slit spectra between 1.5 and 2.4mum for 14 nearby early-type galaxies using SofI at NTT and higher resolution (R~3000) long-slit spectra, centered at the MgI at ~1.51mum for a heterogeneous sample of 5 nearby galaxies observed with ISAAC at VLT. We defined spectral indices for CO, NaI, CaI and MgI features and measured the strengths of these features in the sample galaxies. We defined a new global NIR metallicity index, suitable for abundance measurements in low-resolution spectra. Finally, we present an average NIR spectrum of an early-type galaxy, built from a homogenized subset of our sample. The NIR spectra of the sample galaxies show great similarity and the strength of some features does correlate with the iron abundance [Fe/H] and optical metal features of the galaxies. The data suggest that the NIR metal features, in combination with a hydrogen absorption feature may be able to break the age-metallicity degeneracy just like the Mg and Fe features in the optical wavelength range.



قيم البحث

اقرأ أيضاً

147 - Joon Hyeop Lee 2010
A near-infrared (NIR; 2.5 - 4.5 micron) spectroscopic survey of SDSS(Sloan Digital Sky Survey)-selected blue early-type galaxies (BEGs) has been conducted using the AKARI. The NIR spectra of 36 BEGs are secured, which are well balanced in their star- formation(SF)/Seyfert/LINER type composition. For high signal-to-noise ratio, we stack the BEG spectra all and in bins of several properties: color, specific star formation rate and optically-determined spectral type. We estimate the NIR continuum slope and the equivalent width of 3.29 micron PAH emission. In the comparison between the estimated NIR spectral features of the BEGs and those of model galaxies, the BEGs seem to be old-SSP(Simple Stellar Population)-dominated metal-rich galaxies with moderate dust attenuation. The dust attenuation in the BEGs may originate from recent star formation or AGN activity and the BEGs have a clear feature of PAH emission, the evidence of current SF. BEGs show NIR features different from those of ULIRGs, from which we do not find any clear relationship between BEGs and ULIRGs. We find that Seyfert BEGs have more active SF than LINER BEGs, in spite of the fact that Seyferts show stronger AGN activity than LINERs. One possible scenario satisfying both our results and the AGN feedback is that SF, Seyfert and LINER BEGs form an evolutionary sequence: SF - Seyfert - LINER.
In order to study early type galaxies in their simplest environments, we have constructed a well-defined sample of 30 isolated galaxies. The sample contains all RC3 early-type galaxies with no other cataloged galaxy with known redshift lying within a projected radius of 1 (h_100)^{-1} Mpc and =/- 1000 km/s (where we use the recessional velocities in the RC3). We have obtained optical and near-infrared images of 23 of the galaxies and of a comparison sample of 13 early-type galaxies in X-ray detected poor groups of galaxies. We have applied the techniques of unsharp masking, galaxy model division, and color maps to search for morphological features that might provide clues to the evolution of these galaxies. Evidence for dust features is found in approximately 75% of both the isolated and group galaxies (17 of 22 and 9 of 12, respectively). However, shells or tidal features are much more prevalent in our isolated sample than in our group sample (9 of 22 or 41% versus 1 of 12 or 8%, respectively). The isolation and colors of these shell galaxies make it unlikely that tidal interactions or asymmetric star formation are the causes of such features. One model that is not ruled out is that mergers produce the shells. If shells and dust are both merger signatures, the absence of shells in group ellipticals implies that shells: 1) form more easily, 2) are younger, and/or 3) are longer-lived in isolated environments.
We determine the near-infrared Fundamental Plane (FP) for $sim10^4$ early-type galaxies in the 6dF Galaxy Survey (6dFGS). We fit the distribution of central velocity dispersion, near-infrared surface brightness and half-light radius with a three-dime nsional Gaussian model using a maximum likelihood method. For the 6dFGS $J$ band sample we find a FP with $R_{e}$,$propto$,$sigma_0^{1.52pm0.03}I_{e}^{-0.89pm0.01}$, similar to previous near-IR determinations and consistent with the $H$ and $K$ band Fundamental Planes once allowance is made for differences in mean colour. The overall scatter in $R_e$ about the FP is $sigma_r$,=,29%, and is the quadrature sum of an 18% scatter due to observational errors and a 23% intrinsic scatter. Because of the distribution of galaxies in FP space, $sigma_r$ is not the distance error, which we find to be $sigma_d$,=,23%. Using group richness and local density as measures of environment, and morphologies based on visual classifications, we find that the FP slopes do not vary with environment or morphology. However, for fixed velocity dispersion and surface brightness, field galaxies are on average 5% larger than galaxies in higher-density environments, and the bulges of early-type spirals are on average 10% larger than ellipticals and lenticulars. The residuals about the FP show significant trends with environment, morphology and stellar population. The strongest trend is with age, and we speculate that age is the most important systematic source of offsets from the FP, and may drive the other trends through its correlations with environment, morphology and metallicity.
We present Herschel spectroscopy of atomic lines arising in photodissociation regions as well as ionization regions of nearby early-type galaxies (ETGs), focusing on the volume-limited Atlas3D sample. Our data include the [CII], [OI], and [NII] 122 a nd 205 micron lines, along with ancillary data including CO and HI maps. We find ETGs have [CII]/FIR ratios slightly lower than spiral galaxies in the KINGFISH sample, and several ETGs have unusually large [NII] 122/[CII] ratios. The [NII] 122/[CII] ratio is correlated with UV colors and there is a strong anti-correlation of [CII]/FIR with NUV-K seen in both spirals and ETGs, likely due to a softer radiation field with fewer photons available to ionize carbon and heat the gas. The correlation thus makes a [CII] deficit in galaxies with redder stellar populations. The high [NII] 122/[CII] (and low [CII]/FIR) line ratios could also be affected by the removal of much of the diffuse, low density gas, which is consistent with the low HI/H2 ratios. [CII] is now being used as a star formation indicator, and we find it is just as good for ETGs as in spirals. The [CII]/CO ratios found are also similar to those found in spiral galaxies. Through use of the [NII] 205 micron line, estimates of the percentage of [CII] emission arising from ionized gas indicate a significant portion could arise in ionized regions.
(Abridged) We present new K-band spectroscopy for a sample of 48 starburst galaxies, obtained using UKIRT in Hawaii. This constitutes a fair sample of the most common types of starburst galaxies found in the nearby Universe. The variety of near infra red spectral features shown by these galaxies implies different bursts characteristics, which suggests that we survey galaxies with different star formation histories or at different stages of their burst evolution. Using synthetic starburst models, we conclude that the best ensemble of parameters which describe starburst galaxies in the nearby universe are a constant rate of star formation, a Salpeter IMF with an upper mass cutoff equal to 30 solar mass and bursts ages between 10 Myr and 1 Gyr. The model is fully consistent with the differences observed in the optical and FIR between the different types of starbursts. It suggests that HII galaxies have younger bursts and lower metallicities than SBNGs, while LIRGs have younger bursts but higher metallicities. Our observations suggest that the starburst phenomenon must be a sustained or self--sustained phenomenon: either star formation is continuous in time or multiple bursts happen in sequence over a relatively long period of time. The generality of our observations implies that this is a characteristic of starburst galaxies in the nearby Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا