ترغب بنشر مسار تعليمي؟ اضغط هنا

Near infrared spectroscopy of starburst galaxies

263   0   0.0 ( 0 )
 نشر من قبل Roger Coziol
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We present new K-band spectroscopy for a sample of 48 starburst galaxies, obtained using UKIRT in Hawaii. This constitutes a fair sample of the most common types of starburst galaxies found in the nearby Universe. The variety of near infrared spectral features shown by these galaxies implies different bursts characteristics, which suggests that we survey galaxies with different star formation histories or at different stages of their burst evolution. Using synthetic starburst models, we conclude that the best ensemble of parameters which describe starburst galaxies in the nearby universe are a constant rate of star formation, a Salpeter IMF with an upper mass cutoff equal to 30 solar mass and bursts ages between 10 Myr and 1 Gyr. The model is fully consistent with the differences observed in the optical and FIR between the different types of starbursts. It suggests that HII galaxies have younger bursts and lower metallicities than SBNGs, while LIRGs have younger bursts but higher metallicities. Our observations suggest that the starburst phenomenon must be a sustained or self--sustained phenomenon: either star formation is continuous in time or multiple bursts happen in sequence over a relatively long period of time. The generality of our observations implies that this is a characteristic of starburst galaxies in the nearby Universe.



قيم البحث

اقرأ أيضاً

Results from near-infrared 1.5 - 2.5 micron long-slit spectroscopy of 14 nearby Seyfert galaxies are presented.
We present the results of deep near-infrared spectroscopy of seven submillimetre-selected galaxies from the SCUBA 8-mJy and CUDSS surveys. These galaxies were selected because they are too faint to be accessible to optical spectrographs on large tele scopes. We obtain a spectroscopic redshift for one object, and likely redshifts for two more, based on a combination of marginal emission line detections and the shape of the continuum. All three redshifts broadly agree with estimates from their radio/submm spectral energy distributions. From the emission line strengths of these objects, we infer star formation rates of 10-25 Msun/yr, while the lack of detections in the other objects imply even lower rates. By comparing our results with those of other authors, we conclude it is likely that the vast majority (more than 90 per cent) of the star formation in these objects is completely extinguished at rest-frame optical wavelengths, and the emission lines originate in a relatively unobscured region. Finally, we look at future prospects for making spectroscopic redshift determinations of submm galaxies.
118 - N.Z. Dametto 2014
We employ the NASA Infrared Telescope Facilitys near-infrared spectrograph SpeX at 0.8-2.4$mu$m to investigate the spatial distribution of the stellar populations (SPs) in four well known Starburst galaxies: NGC34, NGC1614, NGC3310 and NGC7714. We us e the STARLIGHT code updated with the synthetic simple stellar populations models computed by Maraston (2005, M05). Our main results are that the NIR light in the nuclear surroundings of the galaxies is dominated by young/intermediate age SPs ($t leq 2times10^9$yr), summing from $sim$40% up to 100% of the light contribution. In the nuclear aperture of two sources (NGC1614 and NGC3310) we detected a predominant old SP component ($t > 2times10^9$yr), while for NGC34 and NGC7714 the younger component prevails. Furthermore, we found evidence of a circumnuclear star formation ring-like structure and a secondary nucleus in NGC1614, in agreement with previous studies. We also suggest that the merger/interaction experienced by three of the galaxies studied, NGC1614, NGC3310 and NGC7714 can explain the lower metallicity values derived for the young SP component of these sources. In this scenario the fresh unprocessed metal poorer gas from the destroyed/interacting companion galaxy is driven to the centre of the galaxies and mixed with the central region gas, before star formation takes place. In order to deepen our analysis, we performed the same procedure of SP synthesis using Maraston (2011, M11) EPS models. Our results show that the newer and higher resolution M11 models tend to enhance the old/intermediate age SP contribution over the younger ages.
We present low resolution near-infrared spectroscopy of an unbiased sample of 24 ultraluminous infrared galaxies (ULIRGs), selected from samples previously observed spectroscopically in the mid-infrared with the Infrared Space Observatory (ISO). Qual itatively, the near-infrared spectra resemble those of starbursts. Only in one ULIRG, IRAS 04114-5117E, do we find spectroscopic evidence for AGN activity. The spectroscopic classification in the near-infrared is in very good agreement with the mid-infrared one. For a subset of our sample for which extinction corrections can be derived from Pa-alpha and Br-gamma, we find rather high Pa-alpha luminosities, in accordance with the powering source of these galaxies being star formation.[Fe] emission is strong in ULIRGs and may be linked to starburst and superwind activity. Additionally, our sample includes two unusual objects. The first, IRAS F00183-7111, exhibits extreme [Fe] emission and the second, IRAS F23578-5307, is according to our knowledge one of the most luminous infrared galaxies in H2 rotation-vibration emission.
We present high spatial resolution, medium spectral resolution near-infrared (NIR) H- and K-band long-slit spectroscopy for a sample of 29 nearby (z < 0.01) inactive spiral galaxies, to study the composition of their NIR stellar populations. These sp ectra contain a wealth of diagnostic stellar absorption lines, e.g. MgI 1.575 micron, SiI 1.588 micron, CO (6-3) 1.619 micron, MgI 1.711 micron, NaI 2.207 micron, CaI 2.263 micron and the 12CO and 13CO bandheads longward of 2.29 micron. We use NIR absorption features to study the stellar population and star formation properties of the spiral galaxies along the Hubble sequence, and we produce the first high spatial resolution NIR HK-band template spectra for low redshift spiral galaxies along the Hubble sequence. These templates will find applications in a variety of galaxy studies. The strength of the absorption lines depends on the luminosity and/or temperature of stars and, therefore, spectral indices can be used to trace the stellar population of galaxies. The entire sample testifies that the evolved red stars completely dominate the NIR spectra, and that the hot young star contribution is virtually nonexistent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا