ترغب بنشر مسار تعليمي؟ اضغط هنا

The 6dF Galaxy Survey: The Near-Infrared Fundamental Plane of Early-Type Galaxies

112   0   0.0 ( 0 )
 نشر من قبل Christopher Springob
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the near-infrared Fundamental Plane (FP) for $sim10^4$ early-type galaxies in the 6dF Galaxy Survey (6dFGS). We fit the distribution of central velocity dispersion, near-infrared surface brightness and half-light radius with a three-dimensional Gaussian model using a maximum likelihood method. For the 6dFGS $J$ band sample we find a FP with $R_{e}$,$propto$,$sigma_0^{1.52pm0.03}I_{e}^{-0.89pm0.01}$, similar to previous near-IR determinations and consistent with the $H$ and $K$ band Fundamental Planes once allowance is made for differences in mean colour. The overall scatter in $R_e$ about the FP is $sigma_r$,=,29%, and is the quadrature sum of an 18% scatter due to observational errors and a 23% intrinsic scatter. Because of the distribution of galaxies in FP space, $sigma_r$ is not the distance error, which we find to be $sigma_d$,=,23%. Using group richness and local density as measures of environment, and morphologies based on visual classifications, we find that the FP slopes do not vary with environment or morphology. However, for fixed velocity dispersion and surface brightness, field galaxies are on average 5% larger than galaxies in higher-density environments, and the bulges of early-type spirals are on average 10% larger than ellipticals and lenticulars. The residuals about the FP show significant trends with environment, morphology and stellar population. The strongest trend is with age, and we speculate that age is the most important systematic source of offsets from the FP, and may drive the other trends through its correlations with environment, morphology and metallicity.



قيم البحث

اقرأ أيضاً

Three observables of early-type galaxies - size ($r_{e}$), surface brightness ($I_{e}$), and velocity dispersion ($sigma_{0}$) - form a tight planar correlation known as the fundamental plane (FP), which has provided great insights into the galaxy fo rmation and the evolution processes. However, the FP has been found to be tilted against the simple virial expectation, prompting debates on its origin. In order to investigate the contribution of systematic stellar population variation to the FP tilt, we study here the FP relations of early-type galaxies in mid-infrared (MIR) which may represent the stellar mass well. We examined the wavelength dependence of the FP coefficients, $a$ and $b$ in $log r_{e}= alogsigma_{0} + blog< I >_{e} + c$, using a sample of 56 early-type galaxies for which visible (V-band), near-infrared (K-band), and MIR (Spitzer IRAC, 3.6--8.0$mu$m) data are available. We find that the coefficient $a$ increases as a function of wavelength as $da/dlambda=0.11pm0.04mu m^{-1}$, while the coefficient $b$ reaches the closest to -1 at 3.6--5.8$mu$m. When applied to the visible FP coefficients derived from a larger sample of nearby early-type galaxies, we get the FP relation with $(a,b) simeq $(1.6--1.8,-0.9) at 3.6$mu$m. Our result suggests that the stellar population effect can explain more than half of the FP tilt, closing the gap between the virial expectation and the optical FP. The reduction in the FP tilt is reflected in the dynamical mass-to-light ratio, $M_{dyn}/L$, dependence on $L$ which decreases toward 3.6--5.8$mu$m, suggesting that the MIR light better represents mass than the shorter wavelengths.
We present a complete analysis of the Fundamental Plane of early-type galaxies (ETGs) in the nearby universe. The sample, as defined in paper I, comprises 39,993 ETGs located in environments covering the entire domain in local density (from field to cluster). We derive the FP of ETGs in the grizYJHK wavebands with a detailed discussion on fitting procedure, bias due to selection effects and bias due to correlated errors on r_e and mue as key factors in obtaining meaningful FP coefficients. Studying the Kormendy relation we find that its slope varies from g (3.44+-0.04) to K (3.80+-0.02) implying that smaller size ETGs have a larger ratio of optical/NIR radii than galaxies with larger re. We also examine the Faber-Jackson relation and find that its slope is similar for all wavebands, within the uncertainties, with a mean value of 0.198+-0.007. The variation of the FP coefficients for the magnitude selected sample from g through K amounts to 11%, negligible, and 10%, respectively. We find that the tilt of the FP becomes larger for higher Sersic index and larger axis ratios, independent of the waveband we measured the FP variables. This suggests that these variations are likely related to structural and dynamical differences of galaxian properties. We also show that the current semi-analytical models of galaxy formation reproduce very well the variation of age and metallicity of the stellar populations present in massive ETGs as a function of the stellar mass in these systems. In particular, we find that massive ETGs have coeval stellar pops with age varying only by a few % per decade in mass, while metallicity increases with stellar mass by 23% per mass decade.
We analyse the Fundamental Plane (FP) relation of $39,993$ early-type galaxies (ETGs) in the optical (griz) and $5,080$ ETGs in the Near-Infrared (YJHK) wavebands, forming an optical$+$NIR sample of $4,589$ galaxies. We focus on the analysis of the F P as a function of the environment where galaxies reside. We characterise the environment using the largest group catalogue, based on 3D data, generated from SDSS at low redshift ($z < 0.1$). We find that the intercept $``c$ of the FP decreases smoothly from high to low density regions, implying that galaxies at low density have on average lower mass-to-light ratios than their high-density counterparts. The $``c$ also decreases as a function of the mean characteristic mass of the parent galaxy group. However, this trend is weak and completely accounted for by the variation of $``c$ with local density. The variation of the FP offset is the same in all wavebands, implying that ETGs at low density have younger luminosity-weighted ages than cluster galaxies, consistent with the expectations of semi-analytical models of galaxy formation. We measure an age variation of $sim 0.048$~dex ($sim 11%$) per decade of local galaxy density. This implies an age difference of about $32 %$ ($sim 3 , Gyr$) between galaxies in the regions of highest density and the field. We find the metallicity decreasing, at $sim 2$~$sigma$, from low to high density. We also find $2.5 , sigma$ evidence that the variation in age per decade of local density augments, up to a factor of two, for galaxies residing in massive relative to poor groups. (abridged)
Using SDSS DR15 to its full extent, we derived fundamental plane distances to over 317 000 early-type galaxies up to a redshift of 0.4. In addition to providing the largest sample of fundamental plane distances ever calculated, as well as a well cali brated group catalogue covering the entire SDSS spectroscopic footprint as far a redshift of 0.5, we present several improvements reaching beyond the traditional definition of the fundamental plane. In one approach, we adjusted the distances by removing systematic biases and selection effects in redshift-magnitude space, thereby greatly improving the quality of measurements. Alternatively, by expanding the traditional fundamental plane by additional terms, we managed to remove systematic biases caused by the selection of our SDSS spectroscopic galaxy sample as well as notably reducing its scatter. We discuss the advantages and caveats of these various methods and calibrations in detail. We found that improving the fundamental plane distance estimates beyond the established methods requires a delicate balancing act between various systematic biases and gains, but managed to reduce the uncertainty of our distance measurements by about a factor of two compared to the traditional fundamental plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا