ترغب بنشر مسار تعليمي؟ اضغط هنا

Reshape the perfect electrical conductor cylinder at will

503   0   0.0 ( 0 )
 نشر من قبل Huanyang Chen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A general method is proposed to design the cylindrical cloak, concentrator and superscatterer with arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.



قيم البحث

اقرأ أيضاً

The aim of an invisibility device is to guide light around any object put inside, being able to hide objects from sight. In this work, we propose a novel design of dielectric invisibility media based on negative refraction and optical conformal mappi ng that seems to create perfect invisibility. This design has some advantages and more relaxed constraints compared with already proposed schemes. In particular, it represents an example where the time delay in a dielectric invisibility device is zero. Furthermore, due to impedance matching of negatively refracting materials, the reflection should be close to zero. These findings strongly indicate that perfect invisibility with optically isotropic materials is possible. Finally, the area of the invisible space is also discussed.
The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographica l digital divide, since high bandwidth wireless coverage is concentrated to urban areas. To meet the goal of ``connecting the unconnected, integrating low Earth orbit (LEO) satellites with the terrestrial cellular networks has been widely considered as a promising solution. In this article, we first introduce the development roadmap of LEO satellite constellations (SatCons), including early attempts in LEO satellites with the emerging LEO constellations. Further, we discuss the unique opportunities of employing LEO SatCons for the delivery of integrating 5G networks. Specifically, we present their key performance indicators, which offer important guidelines for the design of associated enabling techniques, and then discuss the potential impact of integrating LEO SatCons with typical 5G use cases, where we engrave our vision of various vertical domains reshaped by LEO SatCons. Technical challenges are finally provided to specify future research directions.
377 - Zhi-Xi Wu , Guanrong Chen 2008
We study the effects of free will and massive opinion of multi-agents in a majority rule model wherein the competition of the two types of opinions is taken into account. To address this issue, we consider two specific models (model I and model II) i nvolving different opinion-updating dynamics. During the opinion-updating process, the agents either interact with their neighbors under a majority rule with probability $1-q$, or make their own decisions with free will (model I) or according to the massive opinion (model II) with probability $q$. We investigate the difference of the average numbers of the two opinions as a function of $q$ in the steady state. We find that the location of the order-disorder phase transition point may be shifted according to the involved dynamics, giving rise to either smooth or harsh conditions to achieve an ordered state. For the practical case with a finite population size, we conclude that there always exists a threshold for $q$ below which a full consensus phase emerges. Our analytical estimations are in good agreement with simulation results.
In a recent paper, we have shown that the QED nonlinear corrections imply a phase correction to the linear evolution of crossing electromagnetic waves in vacuum. Here, we provide a more complete analysis, including a full numerical solution of the QE D nonlinear wave equations for short-distance propagation in a symmetric configuration. The excellent agreement of such a solution with the result that we obtain using our perturbatively-motivated Variational Approach is then used to justify an analytical approximation that can be applied in a more general case. This allows us to find the most promising configuration for the search of photon-photon scattering in optics experiments. In particular, we show that our previous requirement of phase coherence between the two crossing beams can be released. We then propose a very simple experiment that can be performed at future exawatt laser facilities, such as ELI, by bombarding a low power laser beam with the exawatt bump.
Here we make use of vanadium dioxide (VO2) to design a bifunctional metasurface working at the same targeted frequency. With the increase of temperature, the functionality of the designed metasurface can switch from a multi-channel retroreflector to a perfect absorber, caused by the phase transition of VO2 from insulator to conductor. Different from traditional bifunctional metasurfaces designed by simple composition of two functionalities, our proposed bifunctional metasurface is based on the interaction between two functionalities. The device shows good potential for the combination of wavefront manipulation and optical absorption, therefore providing a promising approach for switchable detection and anti-detection devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا