ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting photon-photon scattering in vacuum at exawatt lasers

211   0   0.0 ( 0 )
 نشر من قبل Daniele Tommasini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper, we have shown that the QED nonlinear corrections imply a phase correction to the linear evolution of crossing electromagnetic waves in vacuum. Here, we provide a more complete analysis, including a full numerical solution of the QED nonlinear wave equations for short-distance propagation in a symmetric configuration. The excellent agreement of such a solution with the result that we obtain using our perturbatively-motivated Variational Approach is then used to justify an analytical approximation that can be applied in a more general case. This allows us to find the most promising configuration for the search of photon-photon scattering in optics experiments. In particular, we show that our previous requirement of phase coherence between the two crossing beams can be released. We then propose a very simple experiment that can be performed at future exawatt laser facilities, such as ELI, by bombarding a low power laser beam with the exawatt bump.



قيم البحث

اقرأ أيضاً

We review the theory for photon-photon scattering in vacuum, and some of the proposals for its experimental search, including the results of our recent works on the subject. We then describe a very simple and sensitive proposal of an experiment and d iscuss how it can be used at the present (HERCULES) and the future (ELI) ultrahigh power laser facilities either to find the first evidence of photon-photon scattering in vacuum, or to significantly improve the current experimental limits.
We study how to search for photon-photon scattering in vacuum at present petawatt laser facilities such as HERCULES, and test Quantum Electrodynamics and non-standard models like Born-Infeld theory or scenarios involving minicharged particles or axio n-like bosons. First, we compute the phase shift that is produced when an ultra-intense laser beam crosses a low power beam, in the case of arbitrary polarisations. This result is then used in order to design a complete test of all the parameters appearing in the low energy effective photonic Lagrangian. In fact, we propose a set of experiments that can be performed at HERCULES, eventually allowing either to detect photon-photon scattering as due to new physics, or to set new limits on the relevant parameters, improving by several orders of magnitude the current constraints obtained recently by PVLAS collaboration. We also describe a multi-cross optical mechanism that can further enhance the sensitivity, enabling HERCULES to detect photon-photon scattering even at a rate as small as that predicted by QED. Finally, we discuss how these results can be improved at future exawatt facilities such as ELI, thus providing a new class of precision tests of the Standard Model and beyond.
In spatially structured strong laser fields, quantum electrodynamical vacuum behaves like a nonlinear Kerr medium with modulated third-order susceptibility where new coherent nonlinear effects arise due to modulation. We consider the enhancement of v acuum polarization and magnetization via coherent spatial vacuum effects in the photon-photon interaction process during scattering of a probe laser beam on parallel focused laser beams. Both processes of elastic and inelastic four wave-mixing in structured QED vacuum accompanied with Bragg interference are investigated. The phase-matching conditions and coherent effects in the presence of Bragg grating are analyzed for photon-photon scattering.
Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Our researches are the first demonstrations of two-photon pumped nanolasers in perovskite nanowires. We believe our finding will significantly expand the application of perovskite in low-cost nonlinear optical devices such as optical limiting, optical switch, and biomedical imaging et al.
64 - T. Wang , D. Aktas , O. Alibart 2017
Photon statistical measurements on a semiconductor microlaser, obtained using single-photon counting techniques, show that a newly discovered spontaneous pulsed emission regime possesses superthermal statistical properties. The observed spike dynamic s, typical of small-scale devices, is at the origin of an unexpected discordance between the probability density function and its representation in terms of the first moments, a discordance so far unnoticed in all devices. The impact of this new dynamics is potentially large, since coincidence techniques are presently the sole capable of characterizing light emitted by nanolasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا