ﻻ يوجد ملخص باللغة العربية
The concept of replica symmetry breaking found in the solution of the mean-field Sherrington-Kirkpatrick spin-glass model has been applied to a variety of problems in science ranging from biological to computational and even financial analysis. Thus it is of paramount importance to understand which predictions of the mean-field solution apply to non-mean-field systems, such as realistic short-range spin-glass models. The one-dimensional spin glass with random power-law interactions promises to be an ideal test-bed to answer this question: Not only can large system sizes-which are usually a shortcoming in simulations of high-dimensional short-range system-be studied, by tuning the power-law exponent of the interactions the universality class of the model can be continuously tuned from the mean-field to the short-range universality class. We present details of the model, as well as recent applications to some questions of the physics of spin glasses. First, we study the existence of a spin-glass state in an external field. In addition, we discuss the existence of ultrametricity in short-range spin glasses. Finally, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms.
We present results from Monte Carlo simulations to test for ultrametricity and clustering properties in spin-glass models. By using a one-dimensional Ising spin glass with random power-law interactions where the universality class of the model can be
We discuss the underlying connections among the thermodynamic properties of short-ranged spin glasses, their behavior in large finite volumes, and the interfaces that separate different pure states, and also ground states and low-lying excitations.
We test for the presence or absence of the de Almeida-Thouless line using one-dimensional power-law diluted Heisenberg spin glass model, in which the rms strength of the interactions decays with distance, r as 1/r^{sigma}. It is argued that varying t
We test for the existence of a spin-glass phase transition, the de Almeida-Thouless line, in an externally-applied (random) magnetic field by performing Monte Carlo simulations on a power-law diluted one-dimensional Ising spin glass for very large sy
We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations st