ﻻ يوجد ملخص باللغة العربية
We investigate clustering of malignant glioma cells. emph{In vitro} experiments in collagen gels identified a cell line that formed clusters in a region of low cell density, whereas a very similar cell line (which lacks an important mutation) did not cluster significantly. We hypothesize that the mutation affects the strength of cell-cell adhesion. We investigate this effect in a new experiment, which follows the clustering dynamics of glioma cells on a surface. We interpret our results in terms of a stochastic model and identify two mechanisms of clustering. First, there is a critical value of the strength of adhesion; above the threshold, large clusters grow from a homogeneous suspension of cells; below it, the system remains homogeneous, similarly to the ordinary phase separation. Second, when cells form a cluster, we have evidence that they increase their proliferation rate. We have successfully reproduced the experimental findings and found that both mechanisms are crucial for cluster formation and growth.
The mechanisms underlying collective migration, or the coordinated movement of a population of cells, are not well understood despite its ubiquitous nature. As a means to investigate collective migration, we consider a wound healing scenario in which
In this work, we study the in-vitro dynamics of the most malignant form of the primary brain tumor: Glioblastoma Multiforme. Typically, the growing tumor consists of the inner dense proliferating zone and the outer less dense invasive region. Experim
We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions b
The phenotypic plasticity of cancer cells has received special attention in recent years. Even though related models have been widely studied in terms of mathematical properties, a thorough statistical analysis on parameter estimation and model selec
Differences in magnetic susceptibility between various compartments in heterogeneous samples can introduce unanticipated complications to NMR spectra. On the other hand, an understanding of these effects at the level of the underlying physical princi