ﻻ يوجد ملخص باللغة العربية
We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions between them. Above a critical value of adhesion and for small proliferation large isolated clusters are formed ahead of the front. This is mapped onto the well-known ferromagnetic phase transition in the Ising model. For large adhesion, and larger proliferation the clusters become connected (at some fixed time). For adhesion below the critical value the results are similar to our previous work which neglected adhesion. The results are compared with experiments, and possible directions of future work are proposed.
The mechanisms underlying collective migration, or the coordinated movement of a population of cells, are not well understood despite its ubiquitous nature. As a means to investigate collective migration, we consider a wound healing scenario in which
Cells crawling through tissues migrate inside a complex fibrous environment called the extracellular matrix (ECM), which provides signals regulating motility. Here we investigate one such well-known pathway, involving mutually antagonistic signalling
We present a discrete stochastic model which represents many of the salient features of the biological process of wound healing. The model describes fronts of cells invading a wound. We have numerical results in one and two dimensions. In one dimensi
Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body, while at the same time raising the need to formalise this new knowledge. Here, we review current cell ontology efforts to harmonise an
Cell proliferation is typically incorporated into stochastic mathematical models of cell migration by assuming that cell divisions occur after an exponentially distributed waiting time. Experimental observations, however, show that this assumption is