ﻻ يوجد ملخص باللغة العربية
In this work, we study the in-vitro dynamics of the most malignant form of the primary brain tumor: Glioblastoma Multiforme. Typically, the growing tumor consists of the inner dense proliferating zone and the outer less dense invasive region. Experiments with different types of cells show qualitatively different behavior. Wild-type cells invade a spherically symmetric manner, but mutant cells are organized in tenuous branches. We formulate a model for this sort of growth using two coupled reaction-diffusion equations for the cell and nutrient concentrations. When the ratio of the nutrient and cell diffusion coefficients exceeds some critical value, the plane propagating front becomes unstable with respect to transversal perturbations. The instability threshold and the full phase-plane diagram in the parameter space are determined. The results are in a good agreement with experimental findings for the two types of cells.
We propose a strange-attractor model of tumor growth and metastasis. It is a 4-dimensional spatio-temporal cancer model with strong nonlinear couplings. Even the same type of tumor is different in every patient both in size and appearance, as well as
Prediction and control of cancer invasion is a vital problem in medical science. This paper proposes a modern geometric Ricci-flow and entropy based model for control of avascular multicellular tumor spheroid growth and decay. As a tumor growth/decay
We investigate clustering of malignant glioma cells. emph{In vitro} experiments in collagen gels identified a cell line that formed clusters in a region of low cell density, whereas a very similar cell line (which lacks an important mutation) did not
The understanding of neural activity patterns is fundamentally linked to an understanding of how the brains network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of r
Inspired by biological dynamics, we consider a growth Markov process taking values on the space of rooted binary trees, similar to the Aldous-Shields model. Fix $nge 1$ and $beta>0$. We start at time 0 with the tree composed of a root only. At any ti