ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Deviations of the Front in a one dimensional model of $X+Y to 2X$

64   0   0.0 ( 0 )
 نشر من قبل Jean Berard
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the probabilities of large deviations for the position of the front in a stochastic model of the reaction $X+Y to 2X$ on the integer lattice in which $Y$ particles do not move while $X$ particles move as independent simple continuous time random walks of total jump rate $2$. For a wide class of initial conditions, we prove that a large deviations principle holds and we show that the zero set of the rate function is the interval $[0,v]$, where $v$ is the velocity of the front given by the law of large numbers. We also give more precise estimates for the rate of decay of the slowdown probabilities. Our results indicate a gapless property of the generator of the process as seen from the front, as it happens in the context of nonlinear diffusion equations describing the propagation of a pulled front into an unstable state.

قيم البحث

اقرأ أيضاً

Consider the symmetric exclusion process evolving on an interval and weakly interacting at the end-points with reservoirs. Denote by $I_{[0,T]} (cdot)$ its dynamical large deviations functional and by $V(cdot)$ the associated quasi-potential, defined as $V(gamma) = inf_{T>0} inf_u I_{[0,T]} (u)$, where the infimum is carried over all trajectories $u$ such that $u(0) = barrho$, $u(T) = gamma$, and $barrho$ is the stationary density profile. We derive the partial differential equation which describes the evolution of the optimal trajectory, and deduce from this result the formula obtained by Derrida, Hirschberg and Sadhu cite{DHS2021} for the quasi-potential through the representation of the steady state as a product of matrices.
90 - R. Liptser 2009
We consider a classical model related to an empirical distribution function $ F_n(t)=frac{1}{n}sum_{k=1}^nI_{{xi_kle t}}$ of $(xi_k)_{ige 1}$ -- i.i.d. sequence of random variables, supported on the interval $[0,1]$, with continuous distribution func tion $F(t)=mathsf{P}(xi_1le t)$. Applying ``Stopping Time Techniques, we give a proof of Kolmogorovs exponential bound $$ mathsf{P}big(sup_{tin[0,1]}|F_n(t)-F(t)|ge varepsilonbig)le text{const.}e^{-ndelta_varepsilon} $$ conjectured by Kolmogorov in 1943. Using this bound we establish a best possible logarithmic asymptotic of $$ mathsf{P}big(sup_{tin[0,1]}n^alpha|F_n(t)-F(t)|ge varepsilonbig) $$ with rate $ frac{1}{n^{1-2alpha}} $ slower than $frac{1}{n}$ for any $alphainbig(0,{1/2}big)$.
We give a quantitative analysis of clustering in a stochastic model of one-dimensional gas. At time zero, the gas consists of $n$ identical particles that are randomly distributed on the real line and have zero initial speeds. Particles begin to move under the forces of mutual attraction. When particles collide, they stick together forming a new particle, called cluster, whose mass and speed are defined by the laws of conservation. We are interested in the asymptotic behavior of $K_n(t)$ as $nto infty$, where $K_n(t)$ denotes the number of clusters at time $t$ in the system with $n$ initial particles. Our main result is a functional limit theorem for $K_n(t)$. Its proof is based on the discovered localization property of the aggregation process, which states that the behavior of each particle is essentially defined by the motion of neighbor particles.
84 - Yilin Wang 2021
These notes survey the first and recent results on large deviations of Schramm-Loewner evolutions (SLE) with the emphasis on interrelations among rate functions and applications to complex analysis. More precisely, we describe the large deviations of SLE$_kappa$ when the $kappa$ parameter goes to zero in the chordal and multichordal case and to infinity in the radial case. The rate functions, namely Loewner and Loewner-Kufarev energies, are closely related to the Weil-Petersson class of quasicircles and real rational functions.
We derive the large deviation principle for radial Schramm-Loewner evolution ($operatorname{SLE}$) on the unit disk with parameter $kappa rightarrow infty$. Restricting to the time interval $[0,1]$, the good rate function is finite only on a certain family of Loewner chains driven by absolutely continuous probability measures ${phi_t^2 (zeta), dzeta}_{t in [0,1]}$ on the unit circle and equals $int_0^1 int_{S^1} |phi_t|^2/2,dzeta ,dt$. Our proof relies on the large deviation principle for the long-time average of the Brownian occupation measure by Donsker and Varadhan.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا