ترغب بنشر مسار تعليمي؟ اضغط هنا

Steady state large deviations for one-dimensional, symmetric exclusion processes in weak contact with reservoirs

135   0   0.0 ( 0 )
 نشر من قبل Claudio Landim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider the symmetric exclusion process evolving on an interval and weakly interacting at the end-points with reservoirs. Denote by $I_{[0,T]} (cdot)$ its dynamical large deviations functional and by $V(cdot)$ the associated quasi-potential, defined as $V(gamma) = inf_{T>0} inf_u I_{[0,T]} (u)$, where the infimum is carried over all trajectories $u$ such that $u(0) = barrho$, $u(T) = gamma$, and $barrho$ is the stationary density profile. We derive the partial differential equation which describes the evolution of the optimal trajectory, and deduce from this result the formula obtained by Derrida, Hirschberg and Sadhu cite{DHS2021} for the quasi-potential through the representation of the steady state as a product of matrices.

قيم البحث

اقرأ أيضاً

Let $X^{(delta)}$ be a Wishart process of dimension $delta$, with values in the set of positive matrices of size $m$. We are interested in the large deviations for a family of matrix-valued processes ${delta^{-1} X_t^{(delta)}, t leq 1 }$ as $delta$ tends to infinity. The process $X^{(delta)}$ is a solution of a stochastic differential equation with a degenerate diffusion coefficient. Our approach is based upon the introduction of exponential martingales. We give some applications to large deviations for functionals of the Wishart processes, for example the set of eigenvalues.
Consider a system of particles performing nearest neighbor random walks on the lattice $ZZ$ under hard--core interaction. The rate for a jump over a given bond is direction--independent and the inverse of the jump rates are i.i.d. random variables be longing to the domain of attraction of an $a$--stable law, $0<a<1$. This exclusion process models conduction in strongly disordered one-dimensional media. We prove that, when varying over the disorder and for a suitable slowly varying function $L$, under the super-diffusive time scaling $N^{1 + 1/alpha}L(N)$, the density profile evolves as the solution of the random equation $partial_t rho = mf L_W rho$, where $mf L_W$ is the generalized second-order differential operator $frac d{du} frac d{dW}$ in which $W$ is a double sided $a$--stable subordinator. This result follows from a quenched hydrodynamic limit in the case that the i.i.d. jump rates are replaced by a suitable array ${xi_{N,x} : xinbb Z}$ having same distribution and fulfilling an a.s. invariance principle. We also prove a law of large numbers for a tagged particle.
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier r esults, where rates at the boundaries are comparable to the bulk ones, we show how macroscopic fluctuations are modified when the boundary rates are slower by an order of inverse of the system length.
87 - C. Erignoux , C. Landim , T. Xu 2017
We prove a law of large numbers for the empirical density of one-dimensional, boundary driven, symmetric exclusion processes with different types of non-reversible dynamics at the boundary. The proofs rely on duality techniques.
We study two one-parameter families of point processes connected to random matrices: the Sine_beta and Sch_tau processes. The first one is the bulk point process limit for the Gaussian beta-ensemble. For beta=1, 2 and 4 it gives the limit of the GOE, GUE and GSE models of random matrix theory. In particular, for beta=2 it is a determinantal point process conjectured to have similar behavior to the critical zeros of the Riemann zeta-function. The second process can be obtained as the bulk scaling limit of the spectrum of certain discrete one-dimensional random Schrodinger operators. Both processes have asymptotically constant average density, in our normalization one expects close to lambda/(2pi) points in a large interval of length lambda. Our main results are large deviation principles for the average densities of the processes, essentially we compute the asymptotic probability of seeing an unusual average density in a large interval. Our approach is based on the representation of the counting functions of these processes using stochastic differential equations. We also prove path level large deviation principles for the arising diffusions. Our techniques work for the full range of parameter values. The results are novel even in the classical beta=1, 2 and 4 cases for the Sine_beta process. They are consistent with the existing rigorous results on large gap probabilities and confirm the physical predictions made using log-gas arguments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا