ترغب بنشر مسار تعليمي؟ اضغط هنا

تجميع في نموذج ستوشاستيكي لغاز ذو بعد واحد

Clustering in a stochastic model of one-dimensional gas

140   0   0.0 ( 0 )
 نشر من قبل Vladislav Vysotsky
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a quantitative analysis of clustering in a stochastic model of one-dimensional gas. At time zero, the gas consists of $n$ identical particles that are randomly distributed on the real line and have zero initial speeds. Particles begin to move under the forces of mutual attraction. When particles collide, they stick together forming a new particle, called cluster, whose mass and speed are defined by the laws of conservation. We are interested in the asymptotic behavior of $K_n(t)$ as $nto infty$, where $K_n(t)$ denotes the number of clusters at time $t$ in the system with $n$ initial particles. Our main result is a functional limit theorem for $K_n(t)$. Its proof is based on the discovered localization property of the aggregation process, which states that the behavior of each particle is essentially defined by the motion of neighbor particles.

قيم البحث

اقرأ أيضاً

Some dynamical properties of non interacting particles in a bouncer model are described. They move under gravity experiencing collisions with a moving platform. The evolution to steady state is described in two cases for dissipative dynamics with ine lastic collisions: (i) for large initial energy; (ii) for low initial energy. For (i) we prove an exponential decay while for (ii) a power law marked by a changeover to the steady state is observed. A relation for collisions and time is obtained and allows us to write relevant observables as temperature and entropy as function of either number of collisions and time.
We prove existence and pathwise uniqueness results for four different types of stochastic differential equations (SDEs) perturbed by the past maximum process and/or the local time at zero. Along the first three studies, the coefficients are no longer Lipschitz. The first type is the equation label{eq1} X_{t}=int_{0}^{t}sigma (s,X_{s})dW_{s}+int_{0}^{t}b(s,X_{s})ds+alpha max_{0leq sleq t}X_{s}. The second type is the equation label{eq2} {l} X_{t} =ig{0}{t}sigma (s,X_{s})dW_{s}+ig{0}{t}b(s,X_{s})ds+alpha max_{0leq sleq t}X_{s},,+L_{t}^{0}, X_{t} geq 0, forall tgeq 0. The third type is the equation label{eq3} X_{t}=x+W_{t}+int_{0}^{t}b(X_{s},max_{0leq uleq s}X_{u})ds. We end the paper by establishing the existence of strong solution and pathwise uniqueness, under Lipschitz condition, for the SDE label{e2} X_t=xi+int_0^t si(s,X_s)dW_s +int_0^t b(s,X_s)ds +almax_{0leq sleq t}X_s +be min_{0leq s leq t}X_s.
The financial model proposed involves the liquidation process of a portfolio of $n$ assets through sell or (and) buy orders with volatility. We present the rigorous mathematical formulation of this model in a financial setting resulting to an $n$-dim ensional outer parabolic Stefan problem with noise. In particular, our aim is to estimate for a short time period the areas of zero trading, and their diameter which approximates the minimum of the $n$ spreads of the portfolio assets for orders from the $n$ limit order books of each asset respectively. In dimensions $n=3$, and for zero volatility, this problem stands as a mean field model for Ostwald ripening, and has been proposed and analyzed by Niethammer. Therein, when the initial moving boundary consists of well separated spheres, a first order approximation system of odes had been rigorously derived for the dynamics of the interfaces and the asymptotic profile of the solution. In our financial case, we propose a spherical moving boundaries approach where the zero trading area consists of a union of spherical domains centered at portfolios various prices, while each sphere may correspond to a different market; the relevant radii represent the half of the minimum spread. We apply It^o calculus and provide second order formal asymptotics for the stochastic version dynamics, written as a system of stochastic differential equations for the radii evolution in time. A second order approximation seems to disconnect the financial model from the large diffusion assumption for the trading density. Moreover, we solve the approximating systems numerically.
We investigate the probabilities of large deviations for the position of the front in a stochastic model of the reaction $X+Y to 2X$ on the integer lattice in which $Y$ particles do not move while $X$ particles move as independent simple continuous t ime random walks of total jump rate $2$. For a wide class of initial conditions, we prove that a large deviations principle holds and we show that the zero set of the rate function is the interval $[0,v]$, where $v$ is the velocity of the front given by the law of large numbers. We also give more precise estimates for the rate of decay of the slowdown probabilities. Our results indicate a gapless property of the generator of the process as seen from the front, as it happens in the context of nonlinear diffusion equations describing the propagation of a pulled front into an unstable state.
We study epidemic spreading according to a emph{Susceptible-Infectious-Recovered} (for short, emph{SIR}) network model known as the {em Reed-Frost} model, and we establish sharp thresholds for two generative models of {em one-dimensional small-world graphs}, in which graphs are obtained by adding random edges to a cycle. In $3$-regular graphs obtained as the union of a cycle and a random perfect matching, we show that there is a sharp threshold at $.5$ for the contagion probability along edges. In graphs obtained as the union of a cycle and of a $mathcal{G}_{n,c/n}$ ErdH{o}s-Renyi random graph with edge probability $c/n$, we show that there is a sharp threshold $p_c$ for the contagion probability: the value of $p_c$ turns out to be $sqrt 2 -1approx .41$ for the sparse case $c=1$ yielding an expected node degree similar to the random $3$-regular graphs above. In both models, below the threshold we prove that the infection only affects $mathcal{O}(log n)$ nodes, and that above the threshold it affects $Omega(n)$ nodes. These are the first fully rigorous results establishing a phase transition for SIR models (and equivalent percolation problems) in small-world graphs. Although one-dimensional small-world graphs are an idealized and unrealistic network model, a number of realistic qualitative phenomena emerge from our analysis, including the spread of the disease through a sequence of local outbreaks, the danger posed by random connections, and the effect of super-spreader events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا