ﻻ يوجد ملخص باللغة العربية
A new operating regime of the Superconducting Quantum Interference Filter (SQIF) is investigated. The voltage to magnetic field response function, V(H), is determined by a Fraunhofer dependence of the critical current and magnetic flux focusing effect in Josephson junctions (F-mode). For SQIF-arrays made of high-Tc superconducting bicrystal Josephson junctions the F-mode plays a predominant role in the voltage-field response V(H). The relatively large superconducting loops of the SQIF are used for inductive coupling to the external input circuit. It is shown that the output noise of a SQIF-array measured with a cooled amplifier in the 1-2 GHz range is determined by the slope of the V(H) characteristic. Power gain and saturation power were evaluated using low frequency SQIF parameters. Finally, we consider the influence of the spread in the parameters of Josephson junctions in the SQIF-array on the V(H) characteristic of the whole structure.
We successfully exploit the parabolic shape of the dc voltage output dip around B=0 of a Superconducting Quantum Interference Filter (SQIF) to mix weak external rf signals. The two tone response of weak time harmonic electromagnetic fields has been d
We present an experimental study of two-dimensional superconducting quantum interference filters (2D-SQIFs) in the presence of a magnetic field B. The dependences of the dc voltage on the applied magnetic field are characterized by a unique delta-lik
The authors demonstrate quadratic mixing of weak time harmonic electromagnetic fields applied to Superconducting Quantum Interference Filters, manufactured from high-$T_{mathrm{c}}$ grain boundary Josephson junctions and operated in active microcoole
Superconducting Quantum Interference Filters (SQIFs) are arrays of superconducting loops of different sizes including Josephson Junctions (JJ). For a random distribution of sizes, they present a non-periodic response to an applied magnetic field, wit
We have developed an absolute magnetic field sensor using Superconducting Quantum Interference Filter (SQIF) made of high-T_c grain boundary Josephson junctions. The device shows the typical magnetic field dependent voltage response V(B), which is sh