ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Tc Superconducting Quantum Interference Filters (SQIFs) made by ion irradiation

328   0   0.0 ( 0 )
 نشر من قبل Jerome Lesueur
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting Quantum Interference Filters (SQIFs) are arrays of superconducting loops of different sizes including Josephson Junctions (JJ). For a random distribution of sizes, they present a non-periodic response to an applied magnetic field, with an extended linear regime and a sizable field sensitivity. Such properties make SQIFs interesting devices to detect the magnetic component of electromagnetic waves at microwave frequencies. We have used the highly scalable technique of ion irradiation to make High Tc SQUIDs and SQIFs based on commercial YBa2Cu3O7 films, and studied their properties. Both display optimum performances as a function of temperature and bias current, that can be understood in the frame of numerical simulations that we developed. The role of asymmetries and spread in JJ characteristics (routinely found in HTSc technologies) is described : ion irradiation based devices appear robust against them. We finally present results on SQIF made with 2000 SQUID in series, showing a transfer function dV/dB ~ 1000V/T .

قيم البحث

اقرأ أيضاً

Superconducting Quantum Interference Filters (SQIF) are promising devices for Radio- Frequency (RF) detection combining low noise, high sensitivity, large dynamic range and wide-band capabilities. Impressive progress have been made recently in the fi eld, with SQIF based antennas and amplifiers showing interesting properties in the GHz range using the well-established Nb/AlOx technology. The possibility to extend these results to High Temperature Superconductors (HTS) is still open, and different techniques to fabricate HTS SQIFs are competing to make RF devices. We report on the DC and RF response of a High Temperature SQIF fabricated by the ion irradiation technique. It is made of 1000 Superconducting QUantum Interference Devices (SQUIDs) in series, with loop areas randomly distributed between 6 micron2 and 60 micron2. The DC transfer factor is around 450 V/T at optimal bias and temperature, and the maximum voltage swing around 2:5 mV . We show that such a SQIF detects RF signals up to 150 MHz. It presents linear characteristics for RF power spanning more than five decades, and non-linearities develop beyond PRF = -35 dBm in our set-up configuration. Second-harmonic generation has been shown to be minimum at the functioning point in the whole range of frequencies. A model has been developed which captures the essential features of the SQIF RF response.
Reproducible High Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge 1 to 5 micrometers wide is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7 film through a gold mask such as the unprotected part becomes insulating. A lower Tc part is then defined within the bridge by irradiating with a much lower dose through a 20 nm wide narrow slit opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. Non hysteretic Resistively Shunted Junction (RSJ) like behavior is observed, together with sinc Fraunhofer patterns for rectangular junctions. The IcRn product varies with temperature ; it can reach a few mV. The typical resistance ranges from 0.1 to a few ohms, and the critical current density can be as high as 30 kA/cm2. The dispersion in characteristics is very low, in the 5% to 10% range. Such nanojunctions have been used to make microSQUIDs (Superconducting Quantum Interference Device) operating at Liquid Nitrogen (LN2) temperature. They exhibit a very small asymmetry, a good sensitivity and a rather low noise. The process is easily scalable to make rather complex Josephson circuits.
We have developed an absolute magnetic field sensor using Superconducting Quantum Interference Filter (SQIF) made of high-T_c grain boundary Josephson junctions. The device shows the typical magnetic field dependent voltage response V(B), which is sh arp delta-like dip in the vicinity of zero magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B_0 ~ 0 to a value B ~ B_1, which is about the average value of the earth magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ~ B_1, and the further shielding of the SQIF results in a shift of the dip towards B_0 ~ 0. The low hysteresis observed in the sequence of experiments (less than 5% of B_1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-T_c SQIFs in magnetometry.
162 - T. Wolf , N. Bergeal , C. Ulysse 2010
We have investigated the electrodynamic properties of High-Tc strip-lines made by ion irradiation, in order to evaluate the potentialities of such a technology for RSFQ superconductor digital electronic. SQUID loops of different length and width have been fabricated by ion bombardment of 70 nm thick films through e-beam lithographied shadow masks, and measured at different temperatures. The voltage modulations have been recorded by direct injection of a control current in the SQUIDs arms. The corresponding line inductances have been measured and compared with 3D simulations. A quantitative agreement has been obtained leading to typical values of 0.4 pH/microns without ground plane.
We successfully exploit the parabolic shape of the dc voltage output dip around B=0 of a Superconducting Quantum Interference Filter (SQIF) to mix weak external rf signals. The two tone response of weak time harmonic electromagnetic fields has been d etected on the spectral voltage output of the SQIF at frequency f_0 = f_1 - f_2, for various frequencies f_1 and f_2 ranging from few MHz up to 20 GHz. The two tone response is a characteristic function of static magnetic field B and of bias current I_b, related to the second derivative of the dc voltage output.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا