ﻻ يوجد ملخص باللغة العربية
The authors demonstrate quadratic mixing of weak time harmonic electromagnetic fields applied to Superconducting Quantum Interference Filters, manufactured from high-$T_{mathrm{c}}$ grain boundary Josephson junctions and operated in active microcooler. The authors use the parabolic shape of the dip in the dc-voltage output around B=0 to mix emph{quadratically} two external rf-signals, at frequencies $f_{mathrm{1}}$ and $f_{mathrm{2}}$ well below the Josephson frequency $f_{mathrm{J}}$, and detect the corresponding mixing signal at $| {f_{1}-f_{2}}| $. Quadratic mixing takes also place when the SQIF is operated without magnetic shield. The experimental results are well described by a simple analytical model based on the adiabatic approximation.
We successfully exploit the parabolic shape of the dc voltage output dip around B=0 of a Superconducting Quantum Interference Filter (SQIF) to mix weak external rf signals. The two tone response of weak time harmonic electromagnetic fields has been d
A new operating regime of the Superconducting Quantum Interference Filter (SQIF) is investigated. The voltage to magnetic field response function, V(H), is determined by a Fraunhofer dependence of the critical current and magnetic flux focusing effec
We present an experimental study of two-dimensional superconducting quantum interference filters (2D-SQIFs) in the presence of a magnetic field B. The dependences of the dc voltage on the applied magnetic field are characterized by a unique delta-lik
A new method of preparation of radio-frequency superconducting quantum interference devices on MgB2 thin films is presented. The variable-thickness bridge was prepared by a combination of optical lithography and of the scratching by an atomic force m
Superconducting Quantum Interference Filters (SQIFs) are arrays of superconducting loops of different sizes including Josephson Junctions (JJ). For a random distribution of sizes, they present a non-periodic response to an applied magnetic field, wit