ﻻ يوجد ملخص باللغة العربية
We introduce an alternative thermal diffusive dynamics for the spin-S Ising ferromagnet realized by means of a random walker. The latter hops across the sites of the lattice and flips the relevant spins according to a probability depending on both the local magnetic arrangement and the temperature. The random walker, intended to model a diffusing excitation, interacts with the lattice so that it is biased towards those sites where it can achieve an energy gain. In order to adapt our algorithm to systems made up of arbitrary spins, some non trivial generalizations are implied. In particular, we will apply the new dynamics to two-dimensional spin-1/2 and spin-1 systems analyzing their relaxation and critical behavior. Some interesting differences with respect to canonical results are found; moreover, by comparing the outcomes from the examined cases, we will point out their main features, possibly extending the results to spin-S systems.
We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit expressions for the probability distri
We present a numerical analysis of the entropy rate and statistical complexity related to the spin flip dynamics of the 2D Ising Ferromagnet at different temperatures T. We follow an information theoretic approach and test three different entropy est
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun
Improved fabrication techniques have enabled the possibility of ballistic transport and unprecedented spin manipulation in ultraclean graphene devices. Spin transport in graphene is typically probed in a nonlocal spin valve and is analyzed using spin
Antiferromagnetically coupled Ising s =3 spins on a triangular lattice are very close to ordering at zero temperature. The low temperature behaviour of a triangular lattice with Ising spins s =3 has been simulated by using both Glauber and Kawasaki d