ﻻ يوجد ملخص باللغة العربية
We present a numerical analysis of the entropy rate and statistical complexity related to the spin flip dynamics of the 2D Ising Ferromagnet at different temperatures T. We follow an information theoretic approach and test three different entropy estimation algorithms to asses entropy rate and statistical complexity of binary sequences. The latter are obtained by monitoring the orientation of a single spin on a square lattice of side-length L=256 at a given temperature parameter over time. The different entropy estimation procedures are based on the M-block Shannon entropy (a well established method that yields results for benchmarking purposes), non-sequential recursive pair substitution (providing an elaborate and an approximate estimator) and a convenient data compression algorithm contained in the zlib-library (providing an approximate estimator only). We propose an approximate measure of statistical complexity that emphasizes on correlations within the sequence and which is easy to implement, even by means of black-box data compression algorithms. Regarding the 2D Ising Ferromagnet simulated using Metropolis dynamics and for binary sequences of finite length, the proposed approximate complexity measure is peaked close to the critical temperature. For the approximate estimators, a finite-size scaling analysis reveals that the peak approaches the critical temperature as the sequence length increases. Results obtained using different spin-flip dynamics are briefly discussed. The suggested complexity measure can be extended to non-binary sequences in a straightforward manner.
In this work we consider information-theoretical observables to analyze short symbolic sequences, comprising time-series that represent the orientation of a single spin in a $2D$ Ising ferromagnet on a square lattice of size $L^2=128^2$, for differen
We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit expressions for the probability distri
We introduce an alternative thermal diffusive dynamics for the spin-S Ising ferromagnet realized by means of a random walker. The latter hops across the sites of the lattice and flips the relevant spins according to a probability depending on both th
We study the derivation of macroscopic traffic models from car-following vehicle dynamics by means of hydrodynamic limits of an Enskog-type kinetic description. We consider the superposition of Follow-the-Leader (FTL) interactions and relaxation towa
Entropy production during the process of thermal phase-separation of multiphase flows is investigated by means of a discrete Boltzmann kinetic model. The entropy production rate is found to increase during the spinodal decomposition stage and to decr