ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations and Pseudo Long Range Dependence in Network Flows: A Non-Stationary Poisson Process Model

369   0   0.0 ( 0 )
 نشر من قبل Li Li
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain power-law between the mean flux (activity) $<F_i>$ of the $i$th node and its variance $sigma_i$ as $sigma_i propto < F_{i} > ^{alpha}$. Such scaling laws are found to be prevalent both in natural and man-made network systems, but our understanding of their origins still remains limited. In this paper, a non-stationary Poisson process model is proposed to give an analytical explanation of the non-universal scaling phenomenon: the exponent $alpha$ varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behavior and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaling phenomenon.


قيم البحث

اقرأ أيضاً

A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys. Rev. Lett. 90, 110601 (2003) is generalized to the biased case (non equal numbers of zeros and unities in the chain). In the model, the conditional probability that the i-th symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.
We investigate the time evolution of the scores of the second most popular sport in world: the game of cricket. By analyzing the scores event-by-event of more than two thousand matches, we point out that the score dynamics is an anomalous diffusive p rocess. Our analysis reveals that the variance of the process is described by a power-law dependence with a super-diffusive exponent, that the scores are statistically self-similar following a universal Gaussian distribution, and that there are long-range correlations in the score evolution. We employ a generalized Langevin equation with a power-law correlated noise that describe all the empirical findings very well. These observations suggest that competition among agents may be a mechanism leading to anomalous diffusion and long-range correlation.
428 - Fa Wang , Li Li , Jianming Hu 2008
To provide a more accurate description of the driving behaviors in vehicle queues, a namely Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stat ionary distribution corresponds to the observed distribution of practical gaps. The multiformity of this Markov process provides the model enough flexibility to describe various driving behaviors. Two examples are given to show how to specialize it for different scenarios: usually mentioned flows on freeways and start-up flows at signalized intersections. The agreement between the empirical observations and the simulation results suggests the soundness of this new approach.
It is generally known that counting statistics is not correctly described by a Gaussian approximation. Nevertheless, in neutron scattering, it is common practice to apply this approximation to the counting statistics; also at low counting numbers. We show that the application of this approximation leads to skewed results not only for low-count features, such as background level estimation, but also for its estimation at double-digit count numbers. In effect, this approximation is shown to be imprecise on all levels of count. Instead, a Multinomial approach is introduced as well as a more standard Poisson method, which we compare with the Gaussian case. These two methods originate from a proper analysis of a multi-detector setup and a standard triple axis instrument.We devise a simple mathematical procedure to produce unbiased fits using the Multinomial distribution and demonstrate this method on synthetic and actual inelastic scattering data. We find that the Multinomial method provide almost unbiased results, and in some cases outperforms the Poisson statistics. Although significantly biased, the Gaussian approach is in general more robust in cases where the fitted model is not a true representation of reality. For this reason, a proper data analysis toolbox for low-count neutron scattering should therefore contain more than one model for counting statistics.
Many complex systems, including networks, are not static but can display strong fluctuations at various time scales. Characterizing the dynamics in complex networks is thus of the utmost importance in the understanding of these networks and of the dy namical processes taking place on them. In this article, we study the example of the US airport network in the time period 1990-2000. We show that even if the statistical distributions of most indicators are stationary, an intense activity takes place at the local (`microscopic) level, with many disappearing/appearing connections (links) between airports. We find that connections have a very broad distribution of lifetimes, and we introduce a set of metrics to characterize the links dynamics. We observe in particular that the links which disappear have essentially the same properties as the ones which appear, and that links which connect airports with very different traffic are very volatile. Motivated by this empirical study, we propose a model of dynamical networks, inspired from previous studies on firm growth, which reproduces most of the empirical observations both for the stationary statistical distributions and for the dynamical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا