ترغب بنشر مسار تعليمي؟ اضغط هنا

Microdynamics in stationary complex networks

195   0   0.0 ( 0 )
 نشر من قبل Marc Barthelemy
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many complex systems, including networks, are not static but can display strong fluctuations at various time scales. Characterizing the dynamics in complex networks is thus of the utmost importance in the understanding of these networks and of the dynamical processes taking place on them. In this article, we study the example of the US airport network in the time period 1990-2000. We show that even if the statistical distributions of most indicators are stationary, an intense activity takes place at the local (`microscopic) level, with many disappearing/appearing connections (links) between airports. We find that connections have a very broad distribution of lifetimes, and we introduce a set of metrics to characterize the links dynamics. We observe in particular that the links which disappear have essentially the same properties as the ones which appear, and that links which connect airports with very different traffic are very volatile. Motivated by this empirical study, we propose a model of dynamical networks, inspired from previous studies on firm growth, which reproduces most of the empirical observations both for the stationary statistical distributions and for the dynamical properties.



قيم البحث

اقرأ أيضاً

We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables which control the appearance of links between node pairs. We derive analytic expressions for the degree distribution , degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations.
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
In a network, we define shell $ell$ as the set of nodes at distance $ell$ with respect to a given node and define $r_ell$ as the fraction of nodes outside shell $ell$. In a transport process, information or disease usually diffuses from a random node and reach nodes shell after shell. Thus, understanding the shell structure is crucial for the study of the transport property of networks. For a randomly connected network with given degree distribution, we derive analytically the degree distribution and average degree of the nodes residing outside shell $ell$ as a function of $r_ell$. Further, we find that $r_ell$ follows an iterative functional form $r_ell=phi(r_{ell-1})$, where $phi$ is expressed in terms of the generating function of the original degree distribution of the network. Our results can explain the power-law distribution of the number of nodes $B_ell$ found in shells with $ell$ larger than the network diameter $d$, which is the average distance between all pairs of nodes. For real world networks the theoretical prediction of $r_ell$ deviates from the empirical $r_ell$. We introduce a network correlation function $c(r_ell)equiv r_{ell+1}/phi(r_ell)$ to characterize the correlations in the network, where $r_{ell+1}$ is the empirical value and $phi(r_ell)$ is the theoretical prediction. $c(r_ell)=1$ indicates perfect agreement between empirical results and theory. We apply $c(r_ell)$ to several model and real world networks. We find that the networks fall into two distinct classes: (i) a class of {it poorly-connected} networks with $c(r_ell)>1$, which have larger average distances compared with randomly connected networks with the same degree distributions; and (ii) a class of {it well-connected} networks with $c(r_ell)<1$.
Structural changes in a network representation of a system (e.g.,different experimental conditions, time evolution), can provide insight on its organization, function and on how it responds to external perturbations. The deeper understanding of how g ene networks cope with diseases and treatments is maybe the most incisive demonstration of the gains obtained through this differential network analysis point-of-view, which lead to an explosion of new numeric techniques in the last decade. However, {it where} to focus ones attention, or how to navigate through the differential structures can be overwhelming even for few experimental conditions. In this paper, we propose a theory and a methodological implementation for the characterization of shared structural roles of nodes simultaneously within and between networks, whose outcome is a highly {em interpretable} map. The main features and accuracy are investigated with numerical benchmarks generated by a stochastic block model. Results show that it can provide nuanced and interpretable information in scenarios with very different (i) community sizes and (ii) total number of communities, and (iii) even for a large number of 100 networks been compared (e.g., for 100 different experimental conditions). Then, we show evidence that the strength of the method is its story-telling-like characterization of the information encoded in a set of networks, which can be used to pinpoint unexpected differential structures, leading to further investigations and providing new insights. We provide an illustrative, exploratory analysis of four gene co-expression networks from two cell types $times$ two treatments (interferon-$beta$ stimulated or control). The method proposed here allowed us to elaborate and test a set of very specific hypotheses related to {em unique} and {em subtle} nuances of the structural differences between these networks.
Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that may abrupt ly fragment the system, while below this critical dependency (CD) a failure of few nodes leads only to small damage to the system. So far, the research has been focused on interdependent random networks without space limitations. However, many real systems, such as power grids and the Internet, are not random but are spatially embedded. Here we analytically and numerically analyze the stability of systems consisting of interdependent spatially embedded networks modeled as lattice networks. Surprisingly, we find that in lattice systems, in contrast to non-embedded systems, there is no CD and textit{any} small fraction of interdependent nodes leads to an abrupt collapse. We show that this extreme vulnerability of very weakly coupled lattices is a consequence of the critical exponent describing the percolation transition of a single lattice. Our results are important for understanding the vulnerabilities and for designing robust interdependent spatial embedded networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا