ﻻ يوجد ملخص باللغة العربية
A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys. Rev. Lett. 90, 110601 (2003) is generalized to the biased case (non equal numbers of zeros and unities in the chain). In the model, the conditional probability that the i-th symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.
A theory of systems with long-range correlations based on the consideration of binary N-step Markov chains is developed. In the model, the conditional probability that the i-th symbol in the chain equals zero (or unity) is a linear function of the nu
A theory of additive Markov chains with long-range memory, proposed earlier in Phys. Rev. E 68, 06117 (2003), is developed and used to describe statistical properties of long-range correlated systems. The convenient characteristics of such systems, a
A theory of additive Markov chains with long-range memory is used for description of correlation properties of coarse-grained literary texts. The complex structure of the correlations in texts is revealed. Antipersistent correlations at small distanc
We investigate the time evolution of the scores of the second most popular sport in world: the game of cricket. By analyzing the scores event-by-event of more than two thousand matches, we point out that the score dynamics is an anomalous diffusive p
We review briefly the concepts underlying complex systems and probability distributions. The later are often taken as the first quantitative characteristics of complex systems, allowing one to detect the possible occurrence of regularities providing