ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray absorption in Compton-thin AGN: the predictions of a model revisited

61   0   0.0 ( 0 )
 نشر من قبل Alessandra Lamastra
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evidence of a decrease with increasing luminosity of the fraction f_{abs} of absorbed and Compton-thin among X-ray (2-10 keV) selected AGN is observationally rather well supported, while that of an increase of f_{abs} with redshift is rather controversial. In Lamastra, Perola & Matt (2006) the gravitational effect of the SMBH on the molecular interstellar gas, in the central region of the host galaxy, was shown to predict an anti-correlation between f_{abs} and M_{BH}. The most recent findings on the distribution of the Eddington ratio lambda=L_b/L_E as a function of M_{BH} and z are used to convert that relationship into one between f_{abs} and both bolometric (L_b) and X-ray (L_X) luminosities at various values of z. The findings on lambda(M_{BH},z) are properly treated in order to ensure completeness in the prediction of f_{abs} above a certain luminosity, at values of z=0.1, 0.35, 0.7 and >1. To verify the consequence of these findings alone, we adopted in a first istance a distribution of gas surface density Sigma, observed in a sample of local spiral galaxies, irrespective of the galaxy morphological type and z. Assuming in the lambda(M_{BH},z) distribution the Eddington limit, lambda=1, as a ``natural cut-off, the predictions are consistent with the existence of an anti-correlation between f_{abs} and L_X, but fail to reproduce an increase of f_{abs} with z. Because the early type galaxies on average are much poorer in molecular gas than late type ones, a quantitative agreement with the local value of f_{abs} requires the existence of a correlation between Sigma and the central activity. An increase of typical values of Sigma with z, correlated with the activity, might explain an increase of f_{abs} with z. However, at the highest luminosities f_{abs} could hardly exceed about 0.3.

قيم البحث

اقرأ أيضاً

We develop a physically motivated, spherical corona model to investigate the frequency-dependent time lags in AGN. The model includes the effects of Compton up-scattering between the disc UV photons and coronal electrons, and the subsequent X-ray rev erberation from the disc. The time lags are associated with the time required for multiple scatterings to boost UV photons up to soft and hard X-ray energies, and the light crossing time the photons take to reach the observer. This model can reproduce not only low-frequency hard and high-frequency soft lags, but also the clear bumps and wiggles in reverberation profiles which should explain the wavy-residuals currently observed in some AGN. Our model supports an anti-correlation between the optical depth and coronal temperatures. In case of an optically thin corona, time delays due to propagating fluctuations may be required to reproduce observed time lags. We fit the model to the lag-frequency data of 1H0707-495, Ark 564, NGC 4051 and IRAS 13224-3809 estimated using the minimal bias technique so that the observed lags here are highest-possible quality. We find their corona size is ~7-15 r_g having the constrained optical depth ~2-10. The coronal temperature is ~150-300 keV. Finally, we note that the reverberation wiggles may be signatures of repeating scatters inside the corona that control the distribution of X-ray sources.
249 - Weiwei Xu , Zhu Liu , Lijun Gou 2015
The cold disk/torus gas surrounding active galactic nuclei (AGN) emits fluorescent lines when irradiated by hard X-ray photons. The fluorescent lines of elements other than Fe and Ni are rarely detected due to their relative faintness. We report the detection of K$alpha$ lines of neutral Si, S, Ar, Ca, Cr, and Mn, along with the prominent Fe K$alpha$, Fe K$beta$, and Ni K$alpha$ lines, from the deep Chandra observation of the low-luminosity Compton-thick AGN in M51. The Si K$alpha$ line at 1.74 keV is detected at $sim3sigma$, the other fluorescent lines have a significance between 2 and 2.5 $sigma$, while the Cr line has a significance of $sim1.5sigma$. These faint fluorescent lines are made observable due to the heavy obscuration of the intrinsic spectrum of M51, which is revealed by Nustar observation above 10 keV. The hard X-ray continuum of M51 from Chandra and Nustar can be fitted with a power-law spectrum with an index of 1.8, reprocessed by a torus with an equatorial column density of $N_{rm H}sim7times10^{24}$ cm$^{-2}$ and an inclination angle of $74$ degrees. This confirms the Compton-thick nature of the nucleus of M51. The relative element abundances inferred from the fluxes of the fluorescent lines are similar to their solar values, except for Mn, which is about 10 times overabundant. It indicates that Mn is likely enhanced by the nuclear spallation of Fe.
96 - G. Lanzuisi 2016
Compton Thick (CT) AGN are a key ingredient of Cosmic X-ray Background (CXB) synthesis models, but are still an elusive component of the AGN population beyond the local Universe. Multi-wavelength surveys are the only way to find them at z > 0.1, and a deep X-ray coverage is crucial in order to clearly identify them among star forming galaxies. As an example, the deep and wide COSMOS survey allowed us to select a total of 34 CT sources. This number is computed from the 64 nominal CT candidates, each counted for its N H probability distribution function. For each of these sources, rich multi-wavelength information is available, and is used to confirm their obscured nature, by comparing the expected AGN luminosity from spectral energy distribution fitting, with the absorption-corrected X-ray luminosity. While Chandra is more efficient, for a given exposure, in detecting CT candidates in current surveys (by a factor ~2), deep XMM-Newton pointings of bright sources are vital to fully characterize their properties: NH distribution above 10^25 cm^-2, reflection intensity etc., all crucial parameters of CXB models. Since luminous CT AGN at high redshift are extremely rare, the future of CT studies at high redshift will have to rely on the large area surveys currently underway, such as XMM-XXL and Stripe82, and will then require dedicated follow-up with XMM-Newton, while waiting for the advent of the ESA mission Athena.
139 - E. Treister 2009
We constrain the number density and evolution of Compton-thick Active Galactic Nuclei (AGN). In the local Universe we use the wide area surveys from the Swift and INTEGRAL satellites, while for high redshifts we explore candidate selections based on a combination of X-ray and mid-IR parameters. We find a significantly lower space density of Compton-thick AGN in the local Universe than expected from published AGN population synthesis models to explain the X-ray background. This can be explained by the numerous degeneracies in the parameters of those models; we use the high-energy surveys described here to remove those degeneracies. We show that only direct observations of CT AGN can currently constrain the number of heavily-obscured supermassive black holes. At high redshift, the inclusion of IR-selected Compton-thick AGN candidates leads to a much higher space density, implying (a) a different (steeper) evolution for these sources compared to less-obscured AGN, (b) that the IR selection includes a large number of interlopers, and/or (c) that there is a large number of reflection-dominated AGN missed in the INTEGRAL and Swift observations. The contribution of CT AGN to the X-ray background is small, ~9%, with a comparable contribution to the total cosmic accretion, unless reflection-dominated CT AGN significantly outnumber transmission-dominated CT AGN, in which case their contribution can be much higher. Using estimates derived here for the accretion luminosity over cosmic time we estimate the local mass density in supermassive black holes and find a good agreement with available constraints for an accretion efficiency of ~10%. Transmission-dominated CT AGN contribute only ~8% to total black hole growth.
In this work the INTEGRAL hard X-ray selected sample of AGN has been used to investigate the possible contribution of absorbing material distributed within the host galaxies to the total amount of NH measured in the X-ray band. We collected all the a vailable axial ratio measurements of the galaxies hosting our AGN together with their morphological information and find that also for our hard X-ray selected sample a deficit of edge-on galaxies hosting type 1 AGN is present. We estimate that in our hard X-ray selected sample there is a deficit of 24% (+/- 5%) of type 1 AGN. Possible bias in redshift has been excluded, as we found the same effect in a well determined range of z where the number and the distributions of the two classes are statistically the same. Our findings clearly indicate that material located in the host galaxy on scales of hundreds of parsecs and not aligned with the putative absorbing torus of the AGN can contribute to the total amount of column density. This galactic absorber can be large enough to hide the broad line region of some type 1 AGN causing their classification as type 2 objects and giving rise to the deficiency of type 1 in edge-on galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا