ﻻ يوجد ملخص باللغة العربية
In this work the INTEGRAL hard X-ray selected sample of AGN has been used to investigate the possible contribution of absorbing material distributed within the host galaxies to the total amount of NH measured in the X-ray band. We collected all the available axial ratio measurements of the galaxies hosting our AGN together with their morphological information and find that also for our hard X-ray selected sample a deficit of edge-on galaxies hosting type 1 AGN is present. We estimate that in our hard X-ray selected sample there is a deficit of 24% (+/- 5%) of type 1 AGN. Possible bias in redshift has been excluded, as we found the same effect in a well determined range of z where the number and the distributions of the two classes are statistically the same. Our findings clearly indicate that material located in the host galaxy on scales of hundreds of parsecs and not aligned with the putative absorbing torus of the AGN can contribute to the total amount of column density. This galactic absorber can be large enough to hide the broad line region of some type 1 AGN causing their classification as type 2 objects and giving rise to the deficiency of type 1 in edge-on galaxies.
Prediction of the soft X-ray absorption along lines of sight through our Galaxy is crucial for understanding the spectra of extragalactic sources, but requires a good estimate of the foreground column density of photoelectric absorbing species. Assum
The intrinsic X-ray emission of Gamma-Ray Bursts (GRBs) is often found to be absorbed over and above the column density through our own galaxy. The extra component is usually assumed to be due to absorbing gas lying within the host galaxy of the GRB
Many radio galaxies show the presence of dense and dusty gas near the active nucleus. This can be traced by both 21cm HI absorption and soft X-ray absorption, offering new insight into the physical nature of the circumnuclear medium of these distant
We present the first direct measurement of the mean Halo Occupation Distribution (HOD) of X-ray selected AGN in the COSMOS field at z < 1, based on the association of 41 XMM and 17 C-COSMOS AGN with member galaxies of 189 X-ray detected galaxy groups
The dusty torus plays a vital role in unifying active galactic nuclei (AGNs). However, the physical structure of the torus remains largely unclear. Here we present a systematical investigation of the torus mid-infrared (MIR) spectroscopic feature, i.