ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray time lags in AGN: inverse-Compton scattering and spherical corona model

114   0   0.0 ( 0 )
 نشر من قبل Poemwai Chainakun
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a physically motivated, spherical corona model to investigate the frequency-dependent time lags in AGN. The model includes the effects of Compton up-scattering between the disc UV photons and coronal electrons, and the subsequent X-ray reverberation from the disc. The time lags are associated with the time required for multiple scatterings to boost UV photons up to soft and hard X-ray energies, and the light crossing time the photons take to reach the observer. This model can reproduce not only low-frequency hard and high-frequency soft lags, but also the clear bumps and wiggles in reverberation profiles which should explain the wavy-residuals currently observed in some AGN. Our model supports an anti-correlation between the optical depth and coronal temperatures. In case of an optically thin corona, time delays due to propagating fluctuations may be required to reproduce observed time lags. We fit the model to the lag-frequency data of 1H0707-495, Ark 564, NGC 4051 and IRAS 13224-3809 estimated using the minimal bias technique so that the observed lags here are highest-possible quality. We find their corona size is ~7-15 r_g having the constrained optical depth ~2-10. The coronal temperature is ~150-300 keV. Finally, we note that the reverberation wiggles may be signatures of repeating scatters inside the corona that control the distribution of X-ray sources.



قيم البحث

اقرأ أيضاً

We present an extended corona model based on ray-tracing simulations to investigate X-ray time lags in Active Galactic Nuclei (AGN). This model consists of two axial point sources illuminating an accretion disc that produce the reverberation lags. Th ese lags are due to the time delays between the directly observed and reflection photons and are associated with the light-travel time between the source and the disc, so they allow us to probe the disc-corona geometry. We assume the variations of two X-ray sources are triggered by the same primary variations, but allow the two sources to respond in different ways (i.e. having different source responses). The variations of each source induce a delayed accretion disc response and the total lags consist of a combination of both source and disc responses. We show that the extended corona model can reproduce both the low-frequency hard and high-frequency soft (reverberation) lags. Fitting the model to the timing data of PG~1244+026 reveals the hard and soft X-ray sources at $sim6r_{text{g}}$ and $sim11r_{text{g}}$, respectively. The upper source produces small amounts of reflection and can be interpreted as a relativistic jet, or outflowing blob, whose emission is beamed away from the disc. This explains the observed lag-energy in which there is no soft lag at energies $<1$~keV as they are diluted by the soft continuum of the upper source. Finally, our models suggest that the fluctuations propagating between the two sources of PG~1244+026 are possible but only at near the speed of light.
We investigate the X-ray time lags of a recent ~630ks XMM-Newton observation of PG 1211+143. We find well-correlated variations across the XMM-Newton EPIC bandpass, with the first detection of a hard lag in this source with a mean time delay of up to ~3ks at the lowest frequencies. We find that the energy-dependence of the low-frequency hard lag scales approximately linearly with log(E) when averaged over all orbits, consistent with the propagating fluctuations model. However, we find that the low-frequency lag behaviour becomes more complex on timescales longer than a single orbit, suggestive of additional modes of variability. We also detect a high-frequency soft lag at ~10^{-4}Hz with the magnitude of the delay peaking at <0.8ks, consistent with previous observations, which we discuss in terms of small-scale reverberation.
The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and sub-mm wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to $sim 5-20$,MeV. Here we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our Inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow and on the locations where flares are produced. In the context of this model, the strong X-ray counterparts to near-IR flares arising from the inner disk should show no significant time delay, whereas near-IR flares in the outer disk should show a broadened and delayed X-ray flare.
We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the dis tribution of alpha_rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence expected from the IC-CMB model. For a subset of our sample with known superluminal motion based on VLBI observations, we estimate the angle of the kpc-scale jet to the line of sight by considering the additional information in the bends observed between pc- and kpc-scale jets. These angles are sometimes much smaller than estimates based on the IC-CMB model with a Lorentz factor of 15, indicating that these jets may decelerate significantly from pc scales to kpc scales.
191 - C.-I. Bjornsson 2013
Inhomogeneities in a synchrotron source can severely affect the conclusions drawn from observations regarding the source properties. However, their presence is not always easy to establish, since several other effects can give rise to similar observe d characteristics. It is argued that the recently observed broadening of the radio spectra and/or light curves in some of the type Ib/c supernovae is a direct indication of inhomogeneities. As compared to a homogeneous source, this increases the deduced velocity of the forward shock and the observed correlation between total energy and shock velocity could in part be due to a varying covering factor. The X-ray emission from at least some type Ib/c supernovae is unlikely to be synchrotron radiation from an electron distribution accelerated in a non-linear shock. Instead it is shown that the observed correlation during the first few hundred days between the radio, X-ray and bolometric luminosities indicates that the X-ray emission is inverse Compton scattering of the photospheric photons. Inhomogeneities are consistent with equipartition between electrons and magnetic fields in the optically thin synchrotron emitting regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا