ترغب بنشر مسار تعليمي؟ اضغط هنا

High Aspect Pattern Formation by Integration of Micro Inkjetting and Electroless Plating

159   0   0.0 ( 0 )
 نشر من قبل EDA Publishing Association
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports on formation of high aspect micro patterns on low temperature co-fired ceramic (LTCC) substrates by integrating micro inkjetting with electroless plating. Micro inkjetting was realized by using an inkjetting printer that ejects ink droplets from a printhead. This printhead consists of a glass nozzle with a diameter of 50 micrometers and a piezoelectric transducer that is coated on the nozzle. The silver colloidal solution was inkjetted on a sintered CT800 ceramic substrate, followed by curing at 200 degrees C for 60 minutes. As a result, the silver trace with a thickness of 200 nm was obtained. The substrate, with the ejected silver thin film as the seed layer, was then immersed into a preinitiator solution to coat a layer of palladium for enhancing the deposition of nickel. Electroless nickel plating was successfully conducted at a rate of 0.39 micrometers /min, and the thickness of traces was plated up to 84 micrometers. This study demonstrates that the integration of inkjetting with plating is an effective method to form high aspect patterns at the demand location.

قيم البحث

اقرأ أيضاً

69 - Michal Stav{n}o 2017
We report the imaging of magnetic domains in ferromagnetic CoNiB nanotubes with very long aspect ratio, fabricated by electroless plating. While axial magnetization is expected for long tubes made of soft magnetic materials, we evidence series of azi muthal domains. We tentatively explain these by the interplay of anisotropic strain and/or grain size, with magneto-elasticity and/or anisotropic interfacial magnetic anisotropy. This material could be interesting for dense data storage, as well as curvature-induced magnetic phenomena such as the non-reciprocity of spin-wave propagation.
212 - X.-C. Shan , S.H. Ling , H. P. Maw 2008
Multilayered ceramic substrates with embedded micro patterns are becoming increasingly important, for example, in harsh environment electronics and microfluidic devices. Fabrication of these embedded micro patterns, such as micro channels, cavities a nd vias, is a challenge. This study focuses on the process of patterning micro features on ceramic green substrates using micro embossing. A ceramic green tape that possessed near-zero shrinkage in the x-y plane was used, six layers of which were laminated as the embossing substrate. The process parameters that impact on the pattern fidelity were investigated and optimized in this study. Micro features with line-width as small as several micrometers were formed on the ceramic green substrates. The dynamic thermo-mechanical analysis indicated that extending the holding time at certain temperature range would harden the green substrates with little effect on improving the embossing fidelity. Ceramic substrates with embossed micro patterns were obtain d after co-firing. The embedded micro channels were also obtained by laminating the green tapes on the embossed substrates.
67 - Y. C. Liu , X.-C. Shan 2008
Micro-indentation test with a micro flat-end cone indenter was employed to simulate micro embossing process and investigate the thermo-mechanical response of ceramic green substrates. The laminated low temperature co-fired ceramic green tapes were us ed as the testing material ; the correlations of indentation depth versus applied force and applied stress at the temperatures of 25 degrees C and 75degrees C were studied. The results showed that permanent indentation cavities could be formed at temperatures ranging from 25 degrees C to 75 degrees C, and the depth of cavities created was applied force, temperature and dwell time dependent. Creep occurred and made a larger contribution to the plastic deformation at elevated temperatures and high peak loads. There was instantaneous recovery during the unloading and retarded recovery in the first day after indentation. There was no significant pile-up due to material flow observed under compression at the temperature up to 75 degrees C. The plastic deformation was the main cause for formation of cavity on the ceramic green substrate under compression. The results can be used as a guideline for embossing ceramic green substrates.
The present study presents a new micro electromagnetic actuator utilizing a PDMS membrane with a magnet. The actuator is integrated with micro coils to electromagnetically actuate the membrane and results in a large deflection. The micro electromagne tic actuator proposed in this study is easily fabricated and is readily integrated with existing bio-medical chips due to its planar structure.
63 - H.K. Ma , B.R. Hou , H.Y. Wu 2008
In this study, a new type of thin, compact, and light weighed diaphragm micro-pump has been successfully developed to actuate the liquid by the vibration of a diaphragm. The micro-diaphragm pump with two valves is fabricated in an aluminum case by us ing highly accurate CNC machine, and the cross-section dimension is 5mm x 8mm. Both valves and diaphragm are manufactured from PDMS. The amplitude of vibration by a piezoelectric device produces an oscillating flow which may change the chamber volume by changing the curvature of a diaphragm. Several experimental set-ups for performance test in a single micro-diaphragm pump, isothermal flow open system, and a closed liquid cooling system is designed and implemented. The performance of one-side actuating micro-diaphragm pump is affected by the design of check valves, diaphragm, piezoelectric device, chamber volume, input voltage and frequency. The measured maximum flow rate of present design is 72 ml/min at zero total pump head in the range of operation frequency 70-180 Hz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا