ترغب بنشر مسار تعليمي؟ اضغط هنا

Micro Embossing of Ceramic Green Substrates for Micro Devices

239   0   0.0 ( 0 )
 نشر من قبل EDA Publishing Association
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multilayered ceramic substrates with embedded micro patterns are becoming increasingly important, for example, in harsh environment electronics and microfluidic devices. Fabrication of these embedded micro patterns, such as micro channels, cavities and vias, is a challenge. This study focuses on the process of patterning micro features on ceramic green substrates using micro embossing. A ceramic green tape that possessed near-zero shrinkage in the x-y plane was used, six layers of which were laminated as the embossing substrate. The process parameters that impact on the pattern fidelity were investigated and optimized in this study. Micro features with line-width as small as several micrometers were formed on the ceramic green substrates. The dynamic thermo-mechanical analysis indicated that extending the holding time at certain temperature range would harden the green substrates with little effect on improving the embossing fidelity. Ceramic substrates with embossed micro patterns were obtain d after co-firing. The embedded micro channels were also obtained by laminating the green tapes on the embossed substrates.



قيم البحث

اقرأ أيضاً

101 - Y. C. Liu , X.-C. Shan 2008
Micro-indentation test with a micro flat-end cone indenter was employed to simulate micro embossing process and investigate the thermo-mechanical response of ceramic green substrates. The laminated low temperature co-fired ceramic green tapes were us ed as the testing material ; the correlations of indentation depth versus applied force and applied stress at the temperatures of 25 degrees C and 75degrees C were studied. The results showed that permanent indentation cavities could be formed at temperatures ranging from 25 degrees C to 75 degrees C, and the depth of cavities created was applied force, temperature and dwell time dependent. Creep occurred and made a larger contribution to the plastic deformation at elevated temperatures and high peak loads. There was instantaneous recovery during the unloading and retarded recovery in the first day after indentation. There was no significant pile-up due to material flow observed under compression at the temperature up to 75 degrees C. The plastic deformation was the main cause for formation of cavity on the ceramic green substrate under compression. The results can be used as a guideline for embossing ceramic green substrates.
115 - X. Shan , Y. C. Soh , C. W. P. Shi 2008
In this paper, we will report our achievements in developing large area patterning of multilayered ceramic green composites using roller embossing. The aim of our research is to pattern large area ceramic green composites using a modified roller lami nating apparatus, which is compatible with screen printing machines, for integration of embossing and screen printing. The instrumentation of our roller embossing apparatus, as shown in Figure1, consists of roller 1 and rollers 2. Roller 1 is heated up to the desired embossing temperature ; roller 2 is, however, kept at room temperature. The mould is a nickel template manufactured by plating nickel-based micro patterns (height : 50 $mu$m) on a nickel film (thickness : 70 $mu$m) ; the substrate for the roller embossing is a multilayered Heraeus Heralock HL 2000 ceramic green composite. Comparing with the conventional simultaneous embossing, the advantages of roller embossing include : (1) low embossing force ; (2) easiness of demoulding ; (3) localized area in contact with heater ; and etc. We have demonstrated the capability of large area roller embossing with a panel size of 150mmx 150mm on the mentioned substrate. We have explored and confirmed the impact of parameters (feed speed, temperature of roller and applied pressure) to the pattern quality of roller embossing. Furthermore, under the optimized process parameters, we characterized the variations of pattern dimension over the panel area, and calculated a scaling factor in order to make the panel compatible with other processes. Figure 2 shows the embossed patterns on a 150mmx 150mm green ceramic panel.
167 - X.-C. Shan , Z.-F. Wang , R. Maeda 2007
This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensiv e simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.
The present study presents a new micro electromagnetic actuator utilizing a PDMS membrane with a magnet. The actuator is integrated with micro coils to electromagnetically actuate the membrane and results in a large deflection. The micro electromagne tic actuator proposed in this study is easily fabricated and is readily integrated with existing bio-medical chips due to its planar structure.
175 - E. Schwyter , W. Glatz , L. Durrer 2008
We present and discuss the fabrication process and the performance of a flexible micro thermoelectric generator with electroplated Bi2Te3 thermocouples in a SU-8 mold. Demonstrator devices generate 278uWcm-2 at dTmeas=40K across the experimental set up. Based on model calculations, a temperature difference of dTG=21.4K across the generator is assumed. Due to the flexible design and the chosen generator materials, the performance stays high even for curved contact surfaces. The measurement results correlate well with the model based design optimization predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا