ﻻ يوجد ملخص باللغة العربية
Low-temperature spin-polarized scanning tunneling microscopy is employed to study spin transport across single Cobalt-Phathalocyanine molecules adsorbed on well characterized magnetic nanoleads. A spin-polarized electronic resonance is identified over the center of the molecule and exploited to spatially resolve stationary spin states. These states reflect two molecular spin orientations and, as established by density functional calculations, originate from a ferromagnetic molecule-lead superexchange interaction mediated by the organic ligands.
In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy (STM), Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individu
The ultimate aspiration of any detection method is to achieve such a level of sensitivity that individual quanta of a measured value can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far bee
Hybrid organic/inorganic interfaces have been widely reported to host emergent properties that go beyond those of their single constituents. Coupling molecules to the recently discovered topological insulators, which possess a linearly dispersing and
In this work we show how constructing Wigner functions of heterogeneous quantum systems leads to new capability in the visualization of quantum states of atoms and molecules. This method allows us to display quantum correlations (entanglement) betwee
Octahedral Fe$^{2+}$ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation fun