ﻻ يوجد ملخص باللغة العربية
Hybrid organic/inorganic interfaces have been widely reported to host emergent properties that go beyond those of their single constituents. Coupling molecules to the recently discovered topological insulators, which possess a linearly dispersing and spin-momentum--locked Dirac fermions, may offer a promising platform towards new functionalities. Here, we report a scanning tunneling microscopy and spectroscopy study of the prototypical interface between MnPc molecules and a Bi$_2$Te$_3$ surface. MnPc is found to bind stably to the substrate through its central Mn atom. The adsorption process is only accompanied with a minor charge transfer across the interface, resulting in a moderately n-doped Bi$_2$Te$_3$ surface. More remarkably, topological states remain completely unaffected by the presence of the molecules, as evidenced by the absence of scattering patterns around adsorption sites. Interestingly, we show that, while the HOMO and LUMO orbitals closely resembles those of MnPc in the gas phase, a new hybrid states emerges through interaction with the substrate. Our results pave the way towards hybrid organic--topological insulator heterostructures, which may unveil a broad range of exciting and unknown phenomena.
Spatially resolved electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) has been used to investigate as fluidic phase in nanoubbles embedded in a metallic Pd90Pt10 matrix. Using the 1s->2p excitation of the H
Low-temperature spin-polarized scanning tunneling microscopy is employed to study spin transport across single Cobalt-Phathalocyanine molecules adsorbed on well characterized magnetic nanoleads. A spin-polarized electronic resonance is identified ove
Topological insulators are a novel materials platform with high applications potential in fields ranging from spintronics to quantum computation. In the ongoing scientific effort to demonstrate controlled manipulation of their electronic structure by
We extensively characterize the electronic structure of ultra-narrow graphene nanoribbons (GNRs) with armchair edges and zig-zag termini that have 5 carbon atoms across their width (5-AGNRs), as synthesised on Au(111). Scanning tunnelling spectroscop
ZrSiS-type materials represent a large material family with unusual coexistence of topological nonsymmorphic Dirac fermions and nodal-line fermions. As a special group of ZrSiS-family, LnSbTe (Ln = Lanthanide rare earth) compounds provide a unique op