ترغب بنشر مسار تعليمي؟ اضغط هنا

Even Parity, Orbital Singlet and Spin Triplet Pairing for Superconducting $La(O_{1-x}F_x)FeAs$

193   0   0.0 ( 0 )
 نشر من قبل Zhong Fang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present paper, we propose the parity even,orbital singlet and spin triplet pairing state as the ground state of the newly discovered super-conductor $LaO_{1-x}F_xFeAs$.The pairing mechanism involves both the special shape of the electron fermi surface and the strong ferromagnetic fluctuation induced by Hunds rule coupling.The special behavior of the Bogoliubov quasi-particle spectrum may leads to Fermi arc like anisotropy super-conducting gap, which can be detected by angle resolved photo emission(ARPES).The impurity effects are also discussed.

قيم البحث

اقرأ أيضاً

332 - J. Dong , H. J. Zhang , G. Xu 2008
The interplay between different ordered phases, such as superconducting, charge or spin ordered phases, is of central interest in condensed matter physics. The very recent discovery of superconductivity with a remarkable T$_c$= 26 K in Fe-based oxypn ictide La(O$_{1-x}$F$_x$)FeAs is a surprise to the scientific communitycite{Kamihara08}. The pure LaOFeAs itself is not superconducting but shows an anomaly near 150 K in both resistivity and dc magnetic susceptibility. Here we provide combined experimental and theoretical evidences showing that the anomaly is caused by the spin-density-wave (SDW) instability, and electron-doping by F suppresses the SDW instability and recovers the superconductivity. Therefore, the La(O$_{1-x}$F$_x$)FeAs offers an exciting new system showing competing orders in layered compounds.
We present precise measurements of the upper critical field (Hc2) in the recently discovered cobalt oxide superconductor. We have found that the critical field has an unusual temperature dependence; namely, there is an abrupt change of the slope of H c2(T) in a weak field regime. In order to explain this result we have derived and solved Gorkov equations on a triangular lattice. Our experimental results may be interpreted in terms of the field-induced transition from singlet to triplet superconductivity.
We have performed several high-pressure resistivity experiments on the recently discovered superconductors La[O_{0.89}F_{0.11}]FeAs and Ce[O_{0.88}F_{0.12}]FeAs. At ambient pressure, these materials have superconducting onset temperatures T_c of 28 K and 44 K, respectively. While the T_c of La[O_{0.89}F_{0.11}]FeAs goes through a maximum between 10-68 kbar, in qualitative agreement with a recent report by Takahashi et al., the T_c of Ce[O_{0.88}F_{0.12}]FeAs decreases monotonically over the measured pressure range. At 265 kbar, the T_c of the cerium-based compound has been suppressed below 1.1 K.
72 - W. Lu , J. Yang , X.L. Dong 2008
Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.
111 - Q. K. Tang , L. Yang , D. Wang 2018
We investigate the twisted bilayer graphene by a two-orbital Hubbard model on the honeycomb lattice. The model is studied near 1/4 band filling by using the singular-mode functional renormalization group theory. Spin-triplet $f$-wave pairing is found from weak to moderate coupling limit of the local interactions, and is associated with the Hunds rule coupling and incommensurate spin fluctuations at moderate momenta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا