ﻻ يوجد ملخص باللغة العربية
We investigate the twisted bilayer graphene by a two-orbital Hubbard model on the honeycomb lattice. The model is studied near 1/4 band filling by using the singular-mode functional renormalization group theory. Spin-triplet $f$-wave pairing is found from weak to moderate coupling limit of the local interactions, and is associated with the Hunds rule coupling and incommensurate spin fluctuations at moderate momenta.
We investigate the interplay of magnetic fluctuations and Cooper pairing in twisted bilayer graphene from a purely microscopic model within a large-scale tight-binding approach resolving the AA ngstrom scale. For local onsite repulsive interactions a
When two sheets of graphene are stacked at a small twist angle, the resulting flat superlattice minibands are expected to strongly enhance electron-electron interactions. Here we present evidence that near three-quarters ($3/4$) filling of the conduc
Twisted bilayer graphene exhibits a panoply of many-body phenomena that are intimately tied to the appearance of narrow and well isolated electronic bands near magic-angle. The microscopic ingredients that are responsible for the complex experimental
When two graphene sheets are twisted relative to each other by a small angle, enhanced correlations lead to superconductivity whose origin remains under debate. Here, we derive some general constraints on superconductivity in twisted bilayer graphene
We propose a lattice scale two-band generalized Hubbard model as a caricature of the electronic structure of twisted bilayer graphene. Various possible broken symmetry phases can arise, including a nematic phase (which is a form of orbital ferromagne