ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of pressure on the superconducting critical temperature of La[O_{0.89}F_{0.11}]FeAs and Ce[O_{0.88}F_{0.12}]FeAs

112   0   0.0 ( 0 )
 نشر من قبل James Hamlin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed several high-pressure resistivity experiments on the recently discovered superconductors La[O_{0.89}F_{0.11}]FeAs and Ce[O_{0.88}F_{0.12}]FeAs. At ambient pressure, these materials have superconducting onset temperatures T_c of 28 K and 44 K, respectively. While the T_c of La[O_{0.89}F_{0.11}]FeAs goes through a maximum between 10-68 kbar, in qualitative agreement with a recent report by Takahashi et al., the T_c of Ce[O_{0.88}F_{0.12}]FeAs decreases monotonically over the measured pressure range. At 265 kbar, the T_c of the cerium-based compound has been suppressed below 1.1 K.



قيم البحث

اقرأ أيضاً

116 - W. Lu , J. Yang , X.L. Dong 2008
Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.
339 - Xi Dai , Zhong Fang , Yi Zhou 2008
In the present paper, we propose the parity even,orbital singlet and spin triplet pairing state as the ground state of the newly discovered super-conductor $LaO_{1-x}F_xFeAs$.The pairing mechanism involves both the special shape of the electron fermi surface and the strong ferromagnetic fluctuation induced by Hunds rule coupling.The special behavior of the Bogoliubov quasi-particle spectrum may leads to Fermi arc like anisotropy super-conducting gap, which can be detected by angle resolved photo emission(ARPES).The impurity effects are also discussed.
153 - L. Fruchter , F. Bouquet , Z.Z. Li 2012
High-impedance contacts made on the surface of Sr$_{0.88}$La$_{0.12}$CuO$_2$ superconducting thin films systematically display a zero-bias anomaly. We consider two-level systems (TLS) as the origin of this anomaly. We observe that the contribution of some TLS to the contact resistance is weakened by a magnetic field. We show that this could result from the increase of the TLS relaxation rate in the superconducting state, due to its ability to create pairs of quasiparticles out of the condensate, when located close to the surface of the film.
186 - B. Lorenz 2008
High temperature superconductors with a Tc above 40 K have been found to be strongly correlated electron systems and to have a layered structure. Guided by these rules, Kamihara et al. discovered a Tc up to 26 K in the layered La(O1-xFx)FeAs. By repl acing La with tri-valence rare-earth elements RE of smaller ionic radii, Tc has subsequently been raised to 41-52 K. Many theoretical models have been proposed emphasizing the important magnetic origin of superconductivity in this compound system and a possible further Tc-enhancement in RE(O1-xFx)FeAs by compression. This later prediction appears to be supported by the pressure-induced Tc-increase in La(O0.89F0.11)FeAs observed. Here we show that, in contrast to previous expectations, pressure can either suppress or enhance Tc, depending on the doping level, suggesting that a Tc exceeding 50s K may be found only in the yet-to-be discovered compound systems related to but different from R(O1-xFx)FeAs and that the Tc of La(O1-xFx)FeAs and Sm(O1-xFx)FeAs may be further raised to 50s K.
150 - L. Fruchter , F. Bouquet , Z.Z. Li 2011
We have used the electric--field effect to modulate the resistivity of the surface of underdoped Sr$_{0.88}$La$_{0.12}$CuO$_{2+x}$ thin films, allowing opposite modifications of the electron and hole density in the CuO$_2$ planes, an original situati on with respect to conventional chemical doping in electron-doped materials. When the Hall effect indicates a large contribution of a hole band, the electric--field effect on the normal state resistivity is however dominated by the electrons, and the superconducting transition temperature increases when carriers are transfered from holes to electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا