ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical imaging beyond the diffraction limit via dark states

372   0   0.0 ( 0 )
 نشر من قبل Hebin Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the possibility of creating spatial patterns having subwavelength size by using the so-called dark states formed by the interaction between atoms and optical fields. These optical fields have a specified spatial distribution. Our experiments in Rb vapor display spatial patterns that are smaller than the length determined by the diffraction limit of the optical system used in the experiment. This approach may have applications to interference lithography and might be used in coherent Raman spectroscopy to create patterns with subwavelength spatial resolution.



قيم البحث

اقرأ أيضاً

Recent theoretical and experimental studies have shown that imaging with resolution well beyond the diffraction limit can be obtained with so-called superlenses. Images formed by such superlenses are, however, in the near field only, or a fraction of wavelength away from the lens. In this paper, we propose a far-field superlens (FSL) device which is composed of a planar superlens with periodical corrugation. We show in theory that when an object is placed in close proximity of such a FSL, a unique image can be formed in far-field. As an example, we demonstrate numerically that images of 40 nm lines with a 30 nm gap can be obtained from far-field data with properly designed FSL working at 376nm wavelength.
Photonic sensors have many applications in a range of physical settings, from measuring mechanical pressure in manufacturing to detecting protein concentration in biomedical samples. A variety of sensing approaches exist, and plasmonic systems in par ticular have received much attention due to their ability to confine light below the diffraction limit, greatly enhancing sensitivity. Recently, quantum techniques have been identified that can outperform classical sensing methods and achieve sensitivity below the so-called shot-noise limit. Despite this significant potential, the use of definite photon number states in lossy plasmonic systems for further improving sensing capabilities is not well studied. Here, we investigate the sensing performance of a plasmonic interferometer that simultaneously exploits the quantum nature of light and its electromagnetic field confinement. We show that, despite the presence of loss, specialised quantum resources can provide improved sensitivity and resolution beyond the shot-noise limit within a compact plasmonic device operating below the diffraction limit.
Magneto-optical sensors including spin noise spectroscopies and magneto-optical Kerr effect microscopies are now ubiquitous tools for materials characterization that can provide new understanding of spin dynamics, hyperfine interactions, spin-orbit i nteractions, and charge-carrier g-factors. Both interferometric and intensity-difference measurements can provide photon shot-noise limited sensitivity, but further improvements in sensitivity with classical resources require either increased laser power that can induce unwanted heating and electronic perturbations or increased measurement times that can obscure out-of-equilibrium dynamics and radically slow experimental throughput. Proof-of-principle measurements have already demonstrated quantum enhanced spin noise measurements with a squeezed readout field that are likely to be critical to the non-perturbative characterization of spin excitations in quantum materials that emerge at low temperatures. Here, we propose a truncated nonlinear interferometric readout for low-temperature magneto-optical Kerr effect measurements that is accessible with todays quantum optical resources. We show that 10 $text{nrad}/sqrt{text{Hz}}$ sensitivity is achievable with optical power as small as 1 $mu$W such that a realistic $T$ = 83 mK can be maintained in commercially available dilution refrigerators. The quantum advantage for the proposed measurements persists even in the limit of large loss and small squeezing parameters.
The discrimination of coherent states is a key task in optical communication and quantum key distribution protocols. In this work, we use a photon-number-resolving detector, the transition-edge sensor, to discriminate binary-phase-shifted coherent st ates at a telecom wavelength. Owing to its dynamic range and high efficiency, we achieve a bit error probability that unconditionally exceeds the standard quantum limit (SQL) by up to 7.7 dB. The improvement to the SQL persists for signals containing up to approximately seven photons on average and is achieved in a single shot (i.e. without measurement feedback), thus making our approach compatible with larger bandwidths.
The most efficient modern optical communication is known as coherent communication and its standard quantum limit (SQL) is almost reachable with current technology. Though it has been predicted for a long time that this SQL could be overcome via quan tum mechanically optimized receivers, such a performance has not been experimentally realized so far. Here we demonstrate the first unconditional evidence surpassing the SQL of coherent optical communication. We implement a quantum receiver with a simple linear optics configuration and achieve more than 90% of the total detection efficiency of the system. Such an efficient quantum receiver will provide a new way of extending the distance of amplification-free channels, as well as of realizing quantum information protocols based on coherent states and the loophole-free test of quantum mechanics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا