ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto Optical Sensing beyond the Shot Noise Limit

149   0   0.0 ( 0 )
 نشر من قبل Yun-Yi Pai
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-optical sensors including spin noise spectroscopies and magneto-optical Kerr effect microscopies are now ubiquitous tools for materials characterization that can provide new understanding of spin dynamics, hyperfine interactions, spin-orbit interactions, and charge-carrier g-factors. Both interferometric and intensity-difference measurements can provide photon shot-noise limited sensitivity, but further improvements in sensitivity with classical resources require either increased laser power that can induce unwanted heating and electronic perturbations or increased measurement times that can obscure out-of-equilibrium dynamics and radically slow experimental throughput. Proof-of-principle measurements have already demonstrated quantum enhanced spin noise measurements with a squeezed readout field that are likely to be critical to the non-perturbative characterization of spin excitations in quantum materials that emerge at low temperatures. Here, we propose a truncated nonlinear interferometric readout for low-temperature magneto-optical Kerr effect measurements that is accessible with todays quantum optical resources. We show that 10 $text{nrad}/sqrt{text{Hz}}$ sensitivity is achievable with optical power as small as 1 $mu$W such that a realistic $T$ = 83 mK can be maintained in commercially available dilution refrigerators. The quantum advantage for the proposed measurements persists even in the limit of large loss and small squeezing parameters.



قيم البحث

اقرأ أيضاً

Photonic sensors have many applications in a range of physical settings, from measuring mechanical pressure in manufacturing to detecting protein concentration in biomedical samples. A variety of sensing approaches exist, and plasmonic systems in par ticular have received much attention due to their ability to confine light below the diffraction limit, greatly enhancing sensitivity. Recently, quantum techniques have been identified that can outperform classical sensing methods and achieve sensitivity below the so-called shot-noise limit. Despite this significant potential, the use of definite photon number states in lossy plasmonic systems for further improving sensing capabilities is not well studied. Here, we investigate the sensing performance of a plasmonic interferometer that simultaneously exploits the quantum nature of light and its electromagnetic field confinement. We show that, despite the presence of loss, specialised quantum resources can provide improved sensitivity and resolution beyond the shot-noise limit within a compact plasmonic device operating below the diffraction limit.
Coherent-state-based phase estimation is a fruitful testbed for the field of precision measurements since coherent states are robust to decoherence when compared with exotic quantum states. The seminal work done by Caves (https://doi.org/10.1103/Phys RevD.23.1693 , Phys. Rev. D 23, 1693 (1981)) stated that the phase sensitivity of a U(2) interferometer fed with a coherent state is limited by the shot-noise limit (SNL). In this Letter, we demonstrate that this bound is not conclusive sensitivity limit and can be broken when the measurement includes an external phase reference. The SNL can be surpassed by a factor of $sqrt{2}$ and the validity is supported through the calculation of quantum Fisher information. Additionally, we discuss other single-mode Gaussian inputs of which sensitivities are beyond the SNL. Our work shows potential applications for many metological scenarios, particularly when the measured samples immersed in great lossy environments or can withstand bright illumination.
Quantum noise places a fundamental limit on the per photon sensitivity attainable in optical measurements. This limit is of particular importance in biological measurements, where the optical power must be constrained to avoid damage to the specimen. By using non-classically correlated light, we demonstrated that the quantum limit can be surpassed in biological measurements. Quantum enhanced microrheology was performed within yeast cells by tracking naturally occurring lipid granules with sensitivity 2.4 dB beyond the quantum noise limit. The viscoelastic properties of the cytoplasm could thereby be determined with a 64% improved measurement rate. This demonstration paves the way to apply quantum resources broadly in a biological context.
We use a quantum non-demolition measurement to generate a spin squeezed state and to create entanglement in a cloud of 10^5 cold cesium atoms, and for the first time operate an atomic clock improved by spin squeezing beyond the projection noise limit in a proof-of-principle experiment. For a clock-interrogation time of 10 mus the experiments show an improvement of 1.1 dB in the signal-to-noise ratio, compared to the atomic projection noise limit.
We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا