ترغب بنشر مسار تعليمي؟ اضغط هنا

Oblique Impact of Frictionless Spheres: On the Limitations of Hard Sphere Models for Granular Dynamics

287   0   0.0 ( 0 )
 نشر من قبل Thorsten Poeschel
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When granular systems are modeled by frictionless hard spheres, particle-particle collisions are considered as instantaneous events. This implies that while the velocities change according to the collision rule, the positions of the particles are the same before and after such an event. We show that depending on the material and system parameters, this assumption may fail. For the case of viscoelastic particles we present a universal condition which allows to assess whether the hard-sphere modeling and, thus, event-driven Molecular Dynamics simulations are justified.



قيم البحث

اقرأ أيضاً

A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte Carlo (DSMC) algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nano-particle suspended in a compressible solvent.
Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.
We use a two-level simulation method to analyse the critical point associated with demixing of binary hard sphere mixtures. The method exploits an accurate coarse-grained model with two-body and three-body effective interactions. Using this model wit hin the two-level methodology allows computation of properties of the full (fine-grained) mixture. The critical point is located by computing the probability distribution for the number of large particles in the grand canonical ensemble, and matching to the universal form for the $3d$ Ising universality class. The results have a strong and unexpected dependence on the size ratio between large and small particles, which is related to three-body effective interactions, and the geometry of the underlying hard sphere packings.
Direct measurements of the acceleration of spheres and disks impacting granular media reveal simple power law scalings along with complex dynamics which bear the signatures of both fluid and solid behavior. The penetration depth scales linearly with impact velocity while the collision duration is constant for sufficiently large impact velocity. Both quantities exhibit power law dependence on sphere diameter and density, and gravitational acceleration. The acceleration during impact is characterized by two jumps: a rapid, velocity dependent increase upon initial contact and a similarly sharp, depth dependent decrease as the impacting object comes to rest. Examining the measured forces on the sphere in the vicinity of these features leads to a new experimentally based granular force model for collision. We discuss our findings in the context of recently proposed phenomenological models that capture qualitative dynamical features of impact but fail both quantitatively and in their inability to capture significant acceleration fluctuations that occur during penetration and which depend on the impacted material.
A system of hard spheres exhibits physics that is controlled only by their density. This comes about because the interaction energy is either infinite or zero, so all allowed configurations have exactly the same energy. The low density phase is liqui d, while the high density phase is crystalline, an example of order by disorder as it is driven purely by entropic considerations. Here we study a family of hard spin models, which we call hardcore spin models, where we replace the translational degrees of freedom of hard spheres with the orientational degrees of freedom of lattice spins. Their hardcore interaction serves analogously to divide configurations of the many spin system into allowed and disallowed sectors. We present detailed results on the square lattice in $d=2$ for a set of models with $mathbb{Z}_n$ symmetry, which generalize Potts models, and their $U(1)$ limits, for ferromagnetic and antiferromagnetic senses of the interaction, which we refer to as exclusion and inclusion models. As the exclusion/inclusion angles are varied, we find a Kosterlitz-Thouless phase transition between a disordered phase and an ordered phase with quasi-long-ranged order, which is the form order by disorder takes in these systems. These results follow from a set of height representations, an ergodic cluster algorithm, and transfer matrix calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا