ترغب بنشر مسار تعليمي؟ اضغط هنا

Top-gated graphene field-effect-transistors formed by decomposition of SiC

168   0   0.0 ( 0 )
 نشر من قبل Peide Ye
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally-decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions unique transport properties in graphene layers. The measured electron and hole mobility on these fabricated graphene FETs are as high as 5400 cm2/Vs and 4400 cm2/Vs respectively, which are much larger than the corresponding values from conventional SiC or silicon.



قيم البحث

اقرأ أيضاً

Three types of first generation epitaxial graphene field effect transistors (FET) are presented and their relative merits are discussed. Graphene is epitaxially grown on both the carbon and silicon faces of hexagonal silicon carbide and patterned wit h electron beam lithography. The channels have a Hall bar geometry to facilitate magnetoresistance measurements. FETs patterned on the Si-face exhibit off-to-on channel resistance ratios that exceed 30. C-face FETs have lower off-to-on resistance ratios, but their mobilities (up to 5000 cm2/Vs) are much larger than that for Si-face transistors. Initial investigations into all-graphene side gate FET structures are promising.
We demonstrate dual-gated $p$-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe$_2$) using high work-function platinum source/drain contacts, and a hexagonal boron nitride top-gate dielectric. A device topology with con tacts underneath the WSe$_2$ results in $p$-FETs with $I_{ON}$/$I_{OFF}$ ratios exceeding 10$^7$, and contacts that remain Ohmic down to cryogenic temperatures. The output characteristics show current saturation and gate tunable negative differential resistance. The devices show intrinsic hole mobilities around 140 cm$^2$/Vs at room temperature, and approaching 4,000 cm$^2$/Vs at 2 K. Temperature-dependent transport measurements show a metal-insulator transition, with an insulating phase at low densities, and a metallic phase at high densities. The mobility shows a strong temperature dependence consistent with phonon scattering, and saturates at low temperatures, possibly limited by Coulomb scattering, or defects.
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based tra nsistors, reduces the importance of the specifics of the chemical bonding to the metallic electrodes in favor of the carbon-based part of device. The ultimate performance limits are here studied for various constriction and metal-ribbon contact models. In particular we show that, even for poorly contacting metals, properly taylored constrictions can give promising values for both the on-conductance and the subthreshold swing.
We report on quantum-interference measurements in top-gated Hall bars of monolayer graphene epitaxially grown on the Si face of SiC, in which the transition from negative to positive magnetoresistance was achieved varying temperature and charge densi ty. We perform a systematic study of the quantum corrections to the magnetoresistance due to quantum interference of quasiparticles and electron-electron interaction. We analyze the contribution of the different scattering mechanisms affecting the magnetotransport in the $-2.0 times 10^{10}$ cm$^{-2}$ to $3.75 times 10^{11}$ cm$^{-2}$ density region and find a significant influence of the charge density on the intravalley scattering time. Furthermore, we observe a modulation of the electron-electron interaction with charge density not accounted for by present theory. Our results clarify the role of quantum transport in SiC-based devices, which will be relevant in the development of a graphene-based technology for coherent electronics.
The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dim ensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of $13mathrm{mu e/sqrt{Hz}}$ in the 0.2-$0.8 mathrm{GHz}$ band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا